TY - JOUR
T1 - Biological control of an invasive pest eases pressures on global commodity markets
AU - Wyckhuys, K.A.G.
AU - Zhang, W.
AU - Prager, S.D.
AU - Kramer, D.B.
AU - Delaquis, E.
AU - Gonzalez, C.E.
AU - van der Werf, W.
PY - 2018/8/28
Y1 - 2018/8/28
N2 - In an increasingly globalized world, invasive species cause major human, financial, and environmental costs. A cosmopolitan pest of great concern is the cassava mealybug Phenacoccus manihoti (Hemiptera: Pseudococcidae), which invaded Asia in 2008. Following its arrival, P. manihoti inflicted measurable yield losses and a 27% drop in aggregate cassava production in Thailand. As Thailand is a vital exporter of cassava-derived commodities to China and supplies 36% of the world's internationally-traded starch, yield shocks triggered price surges and structural changes in global starch trade. In 2009 a biological control agent was introduced in Asia-the host-specific parasitoid, Anagyrus lopezi (Hymenoptera: Encyrtidae). This parasitoid had previously controlled the cassava mealybug in Africa, and its introduction in Asia restored yield levels at a continent-wide scale. Trade network and price time-series analyses reveal how both mealybug-induced production loss and subsequent parasitoid-mediated yield recovery coincided with price fluctuations in futures and spot markets, with important cascading effects on globe-spanning trade networks of (cassava) starch and commodity substitutes. While our analyses may not imply causality, especially given the concurrent 2007-2011 food crises, our results do illuminate the important interconnections among subcomponents of the global commodity system. Our work underlines how ecologically-based tactics support resilience and safeguard primary productivity in (tropical) agro-ecosystems, which in turn help stabilize commodity markets in a similar way as pesticide-centered approaches. Yet, more importantly, (judiciously-implemented) biological control can deliver ample 'hidden' environmental and human-health benefits that are not captured by the prices of globally-traded commodities.
AB - In an increasingly globalized world, invasive species cause major human, financial, and environmental costs. A cosmopolitan pest of great concern is the cassava mealybug Phenacoccus manihoti (Hemiptera: Pseudococcidae), which invaded Asia in 2008. Following its arrival, P. manihoti inflicted measurable yield losses and a 27% drop in aggregate cassava production in Thailand. As Thailand is a vital exporter of cassava-derived commodities to China and supplies 36% of the world's internationally-traded starch, yield shocks triggered price surges and structural changes in global starch trade. In 2009 a biological control agent was introduced in Asia-the host-specific parasitoid, Anagyrus lopezi (Hymenoptera: Encyrtidae). This parasitoid had previously controlled the cassava mealybug in Africa, and its introduction in Asia restored yield levels at a continent-wide scale. Trade network and price time-series analyses reveal how both mealybug-induced production loss and subsequent parasitoid-mediated yield recovery coincided with price fluctuations in futures and spot markets, with important cascading effects on globe-spanning trade networks of (cassava) starch and commodity substitutes. While our analyses may not imply causality, especially given the concurrent 2007-2011 food crises, our results do illuminate the important interconnections among subcomponents of the global commodity system. Our work underlines how ecologically-based tactics support resilience and safeguard primary productivity in (tropical) agro-ecosystems, which in turn help stabilize commodity markets in a similar way as pesticide-centered approaches. Yet, more importantly, (judiciously-implemented) biological control can deliver ample 'hidden' environmental and human-health benefits that are not captured by the prices of globally-traded commodities.
KW - biological control
KW - ecosystem services
KW - invasion biology
KW - social-ecological systems
KW - sustainable intensification
KW - tele-coupling
U2 - 10.1088/1748-9326/aad8f0
DO - 10.1088/1748-9326/aad8f0
M3 - Article
AN - SCOPUS:85055721133
SN - 1748-9326
VL - 13
JO - Environmental Research Letters
JF - Environmental Research Letters
IS - 9
M1 - 094005
ER -