Benchmarking biochar with activated carbon for immobilizing leachable PAH and heterocyclic PAH in contaminated soils

Carlotta Carlini, Sampriti Chaudhuri, Oliver Mann, Daniel Tomsik, Thorsten Hüffer, Nicolas Greggio, Diego Marazza, Thilo Hofmann, Gabriel Sigmund*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

9 Citations (Scopus)

Abstract

Remediation of residually contaminated soils remains a widespread problem. Biochar can immobilize polycyclic aromatic hydrocarbons (PAH). However, studies on its ability to immobilize PAH and N, S, and O substituted PAH (hetero-PAH) in real soils, and benchmarking with commercial activated carbon are missing. Here, we compared the ability of pristine biochar (BC), steam-activated biochar (SABC), and commercial activated carbon (AC) to immobilize PAH and hetero-PAH. The three carbons were tested on soils from four different contaminated sites in Austria. Different amendment rates (w/w) of the carbons were investigated (BC: 1.0, 2.5, and 5%; SABC: 0.5, 1.0, and 2.0%; AC: 1%) in batch experiments to cover meaningful ranges in relation to their performance. SABC performed better than AC, removing at least 80% PAH with the lowest application rate of 0.5%, and achieving a complete removal at an application rate of 1.0%. BC performed slightly worse but still acceptable in residually contaminated soils (40 and 100% removal at 1 and 5% amendment, respectively). The ability of BC and SABC to immobilize PAH decreased as the PAH-molar volume increased. PAH with three or more rings were preferentially removed by AC compared to SABC or BC. This can be explained by the difference in pore size distribution of the carbons which could limit the accessibility of PAH and hetero-PAH to reach sorption sites for π- π electron donor-acceptor interactions, which drive PAH and hetero-PAH sorption to carbons. Column percolation tests confirmed the results obtained in batch tests, indicating, that decisions for soil remediation can be derived from simpler batch experiments. In soil samples with 1% BC, a reduction of over 90% in the total concentration of PAH in the leached water was observed. Overall, BC and SABC were demonstrated to be valid substitutes for AC for stabilizing residually contaminated soils.

Original languageEnglish
Article number121417
JournalEnvironmental Pollution
Volume325
DOIs
Publication statusPublished - 15 May 2023
Externally publishedYes

Keywords

  • Adsorption
  • Carbonaceous material
  • Immobilization
  • polycyclic Aromatic hydrocarbon
  • Soil remediation

Fingerprint

Dive into the research topics of 'Benchmarking biochar with activated carbon for immobilizing leachable PAH and heterocyclic PAH in contaminated soils'. Together they form a unique fingerprint.

Cite this