Bayesian Variable Selection to identify QTL affecting a simulated quantitative trait

A. Schurink, L.L.G. Janss, H.C.M. Heuven

Research output: Contribution to journalArticleAcademicpeer-review

7 Citations (Scopus)


Background Recent developments in genetic technology and methodology enable accurate detection of QTL and estimation of breeding values, even in individuals without phenotypes. The QTL-MAS workshop offers the opportunity to test different methods to perform a genome-wide association study on simulated data with a QTL structure that is unknown beforehand. The simulated data contained 3,220 individuals: 20 sires and 200 dams with 3,000 offspring. All individuals were genotyped, though only 2,000 offspring were phenotyped for a quantitative trait. QTL affecting the simulated quantitative trait were identified and breeding values of individuals without phenotypes were estimated using Bayesian Variable Selection, a multi-locus SNP model in association studies. Results Estimated heritability of the simulated quantitative trait was 0.30 (SD = 0.02). Mean posterior probability of SNP modelled having a large effect ( pˆi) was 0.0066 (95%HPDR: 0.0014-0.0132). Mean posterior probability of variance of second distribution was 0.409 (95%HPDR: 0.286-0.589). The genome-wide association analysis resulted in 14 significant and 43 putative SNP, comprising 7 significant QTL on chromosome 1, 2 and 3 and putative QTL on all chromosomes. Assigning single or multiple QTL to significant SNP was not obvious, especially for SNP in the same region that were more or less in LD. Correlation between the simulated and estimated breeding values of 1,000 offspring without phenotypes was 0.91. Conclusions Bayesian Variable Selection using thousands of SNP was successfully applied to genome-wide association analysis of a simulated dataset with unknown QTL structure. Simulated QTL with Mendelian inheritance were accurately identified, while imprinted and epistatic QTL were only putatively detected. The correlation between simulated and estimated breeding values of offspring without phenotypes was high.
Original languageEnglish
Article numberS8
Number of pages4
JournalBMC Proceedings
Issue numbersuppl. 2
Publication statusPublished - 2012

Fingerprint Dive into the research topics of 'Bayesian Variable Selection to identify QTL affecting a simulated quantitative trait'. Together they form a unique fingerprint.

Cite this