Balance of Emission and Dynamical Controls on Ozone During the Korea-United States Air Quality Campaign From Multiconstituent Satellite Data Assimilation

K. Miyazaki*, T. Sekiya, D. Fu, K.W. Bowman, S.S. Kulawik, K. Sudo, T. Walker, Y. Kanaya, M. Takigawa, K. Ogochi, H. Eskes, K.F. Boersma, A.M. Thompson, B. Gaubert, J. Barre, L.K. Emmons

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

19 Citations (Scopus)

Abstract

Global multiconstituent concentration and emission fields obtained from the assimilation of the satellite retrievals of ozone, CO, NO2, HNO3, and SO2 from the Ozone Monitoring Instrument (OMI), Global Ozone Monitoring Experiment 2, Measurements of Pollution in the Troposphere, Microwave Limb Sounder, and Atmospheric Infrared Sounder (AIRS)/OMI are used to understand the processes controlling air pollution during the Korea-United States Air Quality (KORUS-AQ) campaign. Estimated emissions in South Korea were 0.42 Tg N for NOx and 1.1 Tg CO for CO, which were 40% and 83% higher, respectively, than the a priori bottom-up inventories, and increased mean ozone concentration by up to 7.5 ± 1.6 ppbv. The observed boundary layer ozone exceeded 90 ppbv over Seoul under stagnant phases, whereas it was approximately 60 ppbv during dynamical conditions given equivalent emissions. Chemical reanalysis showed that mean ozone concentration was persistently higher over Seoul (75.10 ± 7.6 ppbv) than the broader KORUS-AQ domain (70.5 ± 9.2 ppbv) at 700 hPa. Large bias reductions (>75%) in the free tropospheric OH show that multiple-species assimilation is critical for balanced tropospheric chemistry analysis and emissions. The assimilation performance was dependent on the particular phase. While the evaluation of data assimilation fields shows an improved agreement with aircraft measurements in ozone (to less than 5 ppbv biases), CO, NO2, SO2, PAN, and OH profiles, lower tropospheric ozone analysis error was largest at stagnant conditions, whereas the model errors were mostly removed by data assimilation under dynamic weather conditions. Assimilation of new AIRS/OMI ozone profiles allowed for additional error reductions, especially under dynamic weather conditions. Our results show the important balance of dynamics and emissions both on pollution and the chemical assimilation system performance.

Original languageEnglish
Pages (from-to)387-413
JournalJournal of Geophysical Research: Atmospheres
Volume124
Issue number1
DOIs
Publication statusPublished - 16 Jan 2019

Keywords

  • air quality
  • Asia
  • data assimilation
  • emission
  • ozone
  • satellite

Fingerprint Dive into the research topics of 'Balance of Emission and Dynamical Controls on Ozone During the Korea-United States Air Quality Campaign From Multiconstituent Satellite Data Assimilation'. Together they form a unique fingerprint.

Cite this