TY - JOUR
T1 - Bacteria drive soil multifunctionality while fungi are effective only at low pathogen abundance
AU - Jia, Jiyu
AU - Hu, Guozhi
AU - Ni, Gang
AU - Xie, Muxi
AU - Li, Ruipeng
AU - Wang, Guangzhou
AU - Zhang, Junling
PY - 2024/1/1
Y1 - 2024/1/1
N2 - The positive correlation between soil biodiversity and multifunctionality has gained widespread recognition. However, the impact of plant pathogens on soil multifunctionality and its relationship with microbial diversity remains understudied. To address this knowledge gap, we collected soil samples from three Hami melon (Cucumis melo L.) planting sites with varying monoculture durations (1, 3, and 5 years). We sequenced the bacterial and fungal communities in these samples and quantified multifunctionality. The results revealed a significant increase in the relative abundance of fungal pathogens over the years of planting, which influenced the correlations between microbial diversity and multifunctionality at a threshold value of 0.01. Both bacterial and fungal richness positively influenced multifunctionality when fungal pathogen abundance was low (< 0.01), whereas only bacterial richness showed a positive correlation with multifunctionality under high fungal pathogen abundance (> 0.01) conditions. Both bacterial and fungal communities were primarily governed by deterministic processes. However, only bacterial community assembly drove soil multifunctionality, showing positive correlations with multifunctionality dissimilarity under low fungal pathogen abundance condition and negative correlations under high fungal pathogen abundance condition, reflecting distinct pathogen pressures. Structural equaling modeling further confirmed the distinct roles of bacterial and fungal richness and composition in promoting multifunctionality under different fungal pathogen condition. Our findings provide evidence that shifts in fungal pathogen abundance alter the balance and interactions between biodiversity and multifunctionality and highlight the importance of engineering biotic interactions in determining soil functioning in agroecosystems.
AB - The positive correlation between soil biodiversity and multifunctionality has gained widespread recognition. However, the impact of plant pathogens on soil multifunctionality and its relationship with microbial diversity remains understudied. To address this knowledge gap, we collected soil samples from three Hami melon (Cucumis melo L.) planting sites with varying monoculture durations (1, 3, and 5 years). We sequenced the bacterial and fungal communities in these samples and quantified multifunctionality. The results revealed a significant increase in the relative abundance of fungal pathogens over the years of planting, which influenced the correlations between microbial diversity and multifunctionality at a threshold value of 0.01. Both bacterial and fungal richness positively influenced multifunctionality when fungal pathogen abundance was low (< 0.01), whereas only bacterial richness showed a positive correlation with multifunctionality under high fungal pathogen abundance (> 0.01) conditions. Both bacterial and fungal communities were primarily governed by deterministic processes. However, only bacterial community assembly drove soil multifunctionality, showing positive correlations with multifunctionality dissimilarity under low fungal pathogen abundance condition and negative correlations under high fungal pathogen abundance condition, reflecting distinct pathogen pressures. Structural equaling modeling further confirmed the distinct roles of bacterial and fungal richness and composition in promoting multifunctionality under different fungal pathogen condition. Our findings provide evidence that shifts in fungal pathogen abundance alter the balance and interactions between biodiversity and multifunctionality and highlight the importance of engineering biotic interactions in determining soil functioning in agroecosystems.
KW - Fungal pathogen
KW - Microbial community assembly
KW - Microbial richness
KW - Monoculture year
KW - Soil multifunctionality
U2 - 10.1016/j.scitotenv.2023.167596
DO - 10.1016/j.scitotenv.2023.167596
M3 - Article
C2 - 37802347
AN - SCOPUS:85173169562
SN - 0048-9697
VL - 906
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 167596
ER -