Automatic segmentation of the olfactory bulbs in MRI

Julia M.H. Noothout*, Elbrich M. Postma, Sanne Boesveldt, Bob D. De Vos, Paul A.M. Smeets, Ivana Išgum

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference paperAcademicpeer-review

Abstract

A decrease in volume of the olfactory bulbs is an early marker for neurodegenerative diseases, such as Parkinson's and Alzheimer's disease. Recently, asymmetric volumes of olfactory bulbs present in postmortem MRIs of COVID-19 patients indicate that the olfactory bulbs might play an important role in the entrance of the disease in the central nervous system. Hence, volumetric assessment of the olfactory bulbs can be valuable for various conditions. Given that manual annotation of the olfactory bulbs in MRI to determine their volume is tedious, we propose a method for their automatic segmentation. To mitigate the class imbalance caused by the small volume of the olfactory bulbs, we first localize the center of each olfactory bulb in a scan using convolutional neural networks (CNNs). We use these center locations to extract a bounding box containing both olfactory bulbs. Subsequently, the slices present in the bounding box are analyzed by a segmentation CNN that classifies each voxel as left olfactory bulb, right olfactory bulb, or background. The method achieved median (IQR) Dice coefficients of 0.84 (0.08) and 0.83 (0.08), and Average Symmetrical Surface Distances of 0.12 (0.08) and 0.13 (0.08) mm for the left and the right olfactory bulb, respectively. Wilcoxon Signed Rank tests showed no significant difference between the volumes computed from the reference annotation and the automatic segmentations. Analysis took only 0.20 second per scan and the results indicate that the proposed method could be a first step towards large-scale studies analyzing pathology and morphology of the olfactory bulbs.

Original languageEnglish
Title of host publicationMedical Imaging 2021
Subtitle of host publicationImage Processing
EditorsIvana Isgum, Bennett A. Landman
PublisherSPIE
ISBN (Electronic)9781510640214
DOIs
Publication statusPublished - 15 Feb 2021
EventMedical Imaging 2021: Image Processing - Virtual, Online, United States
Duration: 15 Feb 202119 Feb 2021

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume11596
ISSN (Print)1605-7422

Conference

ConferenceMedical Imaging 2021: Image Processing
CountryUnited States
CityVirtual, Online
Period15/02/2119/02/21

Keywords

  • Convolutional Neural Network
  • MRI
  • Olfactory Bulbs
  • Segmentation

Fingerprint Dive into the research topics of 'Automatic segmentation of the olfactory bulbs in MRI'. Together they form a unique fingerprint.

Cite this