Atlantic salinity budget in response to Northern and Southern Hemisphere ice sheet discharge

J. van den Berk*, S.S. Drijfhout, W. Hazeleger

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

The impact of an idealised scenario of future mass release of major ice sheets on the Atlantic ocean is studied. A freshwater forcing is applied to the ocean surface in a coupled climate model forced in accordance with a high-end future climate projection for mass loss from the Greenland and Antarctic ice-sheet, together with the RCP8.5 emission scenario. The added freshwater dilutes the entire ocean by increasing total volume, but changes in freshwater budget are non-linear in time, especially in the Atlantic Ocean. In the Atlantic the initial dilution mainly comes from Greenland freshwater, but the increase in mass is counteracted by the mass flux across the boundaries of the Atlantic, with the outflow into the Southern Ocean becoming larger than the inflow through Bering Strait. Associated with this mass divergence, salt is exported to the Southern Ocean by the barotropic flow. Further freshening is associated with more freshwater import by the Atlantic Meridional Overturning Circulation across the southern boundary of the Atlantic. Also, the subtropical gyre exports salt and imports freshwater across the Atlantic’s southern boundary, especially when freshwater from the Antarctic Ice Sheet arrives at the boundary of the basin. It appears that the response to Northern Hemisphere (NH) sources (the Greenland Ice Sheet) and Southern Hemisphere (SH) sources (the Antarctic Ice Sheet) are opposite. In the case of NH-only freshwater forcing, sea surface height (SSH) increases in the Arctic, causing a reduction of the SSH gradient over the Bering Strait, and hence the barotropic throughflow across the Arctic–Atlantic basin reduces. In case of SH-only freshwater forcing, SSH increases in the Pacific, enhancing the barotropic throughflow in the Arctic–Atlantic. When both NH and SH freshwater forcings are present, the response in the Atlantic is dominated by NH forcing. Changes in overturning transport to either NH or SH forcing counteract the response to changes in barotropic transport. These changes are not due to volume transport but mainly due to salinity changes, in particular across the southern boundary of the Atlantic. Only when both SH and NH freshwater forcing are present changes in barotropic transport and overturning transport reinforce each other: the barotropic transport more strongly reacts to NH forcing, while the overturning transport reacts more strongly to SH forcing.

Original languageEnglish
Pages (from-to)5249-5267
JournalClimate Dynamics
Volume52
Issue number9-10
Early online date18 Sep 2018
DOIs
Publication statusPublished - May 2019

Fingerprint

Southern Hemisphere
ice sheet
Northern Hemisphere
salinity
sea surface height
ocean
throughflow
import
strait
budget
barotropic motion
salt
volume transport
meridional circulation
volume change
gyre
basin
sea surface
climate modeling
inflow

Keywords

  • Atlantic Ocean
  • Coupled climate models
  • Meltwater
  • Salinity budget

Cite this

van den Berk, J. ; Drijfhout, S.S. ; Hazeleger, W. / Atlantic salinity budget in response to Northern and Southern Hemisphere ice sheet discharge. In: Climate Dynamics. 2019 ; Vol. 52, No. 9-10. pp. 5249-5267.
@article{9cc23b5aecea447e9098d73c8cce52f0,
title = "Atlantic salinity budget in response to Northern and Southern Hemisphere ice sheet discharge",
abstract = "The impact of an idealised scenario of future mass release of major ice sheets on the Atlantic ocean is studied. A freshwater forcing is applied to the ocean surface in a coupled climate model forced in accordance with a high-end future climate projection for mass loss from the Greenland and Antarctic ice-sheet, together with the RCP8.5 emission scenario. The added freshwater dilutes the entire ocean by increasing total volume, but changes in freshwater budget are non-linear in time, especially in the Atlantic Ocean. In the Atlantic the initial dilution mainly comes from Greenland freshwater, but the increase in mass is counteracted by the mass flux across the boundaries of the Atlantic, with the outflow into the Southern Ocean becoming larger than the inflow through Bering Strait. Associated with this mass divergence, salt is exported to the Southern Ocean by the barotropic flow. Further freshening is associated with more freshwater import by the Atlantic Meridional Overturning Circulation across the southern boundary of the Atlantic. Also, the subtropical gyre exports salt and imports freshwater across the Atlantic’s southern boundary, especially when freshwater from the Antarctic Ice Sheet arrives at the boundary of the basin. It appears that the response to Northern Hemisphere (NH) sources (the Greenland Ice Sheet) and Southern Hemisphere (SH) sources (the Antarctic Ice Sheet) are opposite. In the case of NH-only freshwater forcing, sea surface height (SSH) increases in the Arctic, causing a reduction of the SSH gradient over the Bering Strait, and hence the barotropic throughflow across the Arctic–Atlantic basin reduces. In case of SH-only freshwater forcing, SSH increases in the Pacific, enhancing the barotropic throughflow in the Arctic–Atlantic. When both NH and SH freshwater forcings are present, the response in the Atlantic is dominated by NH forcing. Changes in overturning transport to either NH or SH forcing counteract the response to changes in barotropic transport. These changes are not due to volume transport but mainly due to salinity changes, in particular across the southern boundary of the Atlantic. Only when both SH and NH freshwater forcing are present changes in barotropic transport and overturning transport reinforce each other: the barotropic transport more strongly reacts to NH forcing, while the overturning transport reacts more strongly to SH forcing.",
keywords = "Atlantic Ocean, Coupled climate models, Meltwater, Salinity budget",
author = "{van den Berk}, J. and S.S. Drijfhout and W. Hazeleger",
year = "2019",
month = "5",
doi = "10.1007/s00382-018-4444-4",
language = "English",
volume = "52",
pages = "5249--5267",
journal = "Climate Dynamics",
issn = "0930-7575",
publisher = "Springer Verlag",
number = "9-10",

}

Atlantic salinity budget in response to Northern and Southern Hemisphere ice sheet discharge. / van den Berk, J.; Drijfhout, S.S.; Hazeleger, W.

In: Climate Dynamics, Vol. 52, No. 9-10, 05.2019, p. 5249-5267.

Research output: Contribution to journalArticleAcademicpeer-review

TY - JOUR

T1 - Atlantic salinity budget in response to Northern and Southern Hemisphere ice sheet discharge

AU - van den Berk, J.

AU - Drijfhout, S.S.

AU - Hazeleger, W.

PY - 2019/5

Y1 - 2019/5

N2 - The impact of an idealised scenario of future mass release of major ice sheets on the Atlantic ocean is studied. A freshwater forcing is applied to the ocean surface in a coupled climate model forced in accordance with a high-end future climate projection for mass loss from the Greenland and Antarctic ice-sheet, together with the RCP8.5 emission scenario. The added freshwater dilutes the entire ocean by increasing total volume, but changes in freshwater budget are non-linear in time, especially in the Atlantic Ocean. In the Atlantic the initial dilution mainly comes from Greenland freshwater, but the increase in mass is counteracted by the mass flux across the boundaries of the Atlantic, with the outflow into the Southern Ocean becoming larger than the inflow through Bering Strait. Associated with this mass divergence, salt is exported to the Southern Ocean by the barotropic flow. Further freshening is associated with more freshwater import by the Atlantic Meridional Overturning Circulation across the southern boundary of the Atlantic. Also, the subtropical gyre exports salt and imports freshwater across the Atlantic’s southern boundary, especially when freshwater from the Antarctic Ice Sheet arrives at the boundary of the basin. It appears that the response to Northern Hemisphere (NH) sources (the Greenland Ice Sheet) and Southern Hemisphere (SH) sources (the Antarctic Ice Sheet) are opposite. In the case of NH-only freshwater forcing, sea surface height (SSH) increases in the Arctic, causing a reduction of the SSH gradient over the Bering Strait, and hence the barotropic throughflow across the Arctic–Atlantic basin reduces. In case of SH-only freshwater forcing, SSH increases in the Pacific, enhancing the barotropic throughflow in the Arctic–Atlantic. When both NH and SH freshwater forcings are present, the response in the Atlantic is dominated by NH forcing. Changes in overturning transport to either NH or SH forcing counteract the response to changes in barotropic transport. These changes are not due to volume transport but mainly due to salinity changes, in particular across the southern boundary of the Atlantic. Only when both SH and NH freshwater forcing are present changes in barotropic transport and overturning transport reinforce each other: the barotropic transport more strongly reacts to NH forcing, while the overturning transport reacts more strongly to SH forcing.

AB - The impact of an idealised scenario of future mass release of major ice sheets on the Atlantic ocean is studied. A freshwater forcing is applied to the ocean surface in a coupled climate model forced in accordance with a high-end future climate projection for mass loss from the Greenland and Antarctic ice-sheet, together with the RCP8.5 emission scenario. The added freshwater dilutes the entire ocean by increasing total volume, but changes in freshwater budget are non-linear in time, especially in the Atlantic Ocean. In the Atlantic the initial dilution mainly comes from Greenland freshwater, but the increase in mass is counteracted by the mass flux across the boundaries of the Atlantic, with the outflow into the Southern Ocean becoming larger than the inflow through Bering Strait. Associated with this mass divergence, salt is exported to the Southern Ocean by the barotropic flow. Further freshening is associated with more freshwater import by the Atlantic Meridional Overturning Circulation across the southern boundary of the Atlantic. Also, the subtropical gyre exports salt and imports freshwater across the Atlantic’s southern boundary, especially when freshwater from the Antarctic Ice Sheet arrives at the boundary of the basin. It appears that the response to Northern Hemisphere (NH) sources (the Greenland Ice Sheet) and Southern Hemisphere (SH) sources (the Antarctic Ice Sheet) are opposite. In the case of NH-only freshwater forcing, sea surface height (SSH) increases in the Arctic, causing a reduction of the SSH gradient over the Bering Strait, and hence the barotropic throughflow across the Arctic–Atlantic basin reduces. In case of SH-only freshwater forcing, SSH increases in the Pacific, enhancing the barotropic throughflow in the Arctic–Atlantic. When both NH and SH freshwater forcings are present, the response in the Atlantic is dominated by NH forcing. Changes in overturning transport to either NH or SH forcing counteract the response to changes in barotropic transport. These changes are not due to volume transport but mainly due to salinity changes, in particular across the southern boundary of the Atlantic. Only when both SH and NH freshwater forcing are present changes in barotropic transport and overturning transport reinforce each other: the barotropic transport more strongly reacts to NH forcing, while the overturning transport reacts more strongly to SH forcing.

KW - Atlantic Ocean

KW - Coupled climate models

KW - Meltwater

KW - Salinity budget

U2 - 10.1007/s00382-018-4444-4

DO - 10.1007/s00382-018-4444-4

M3 - Article

VL - 52

SP - 5249

EP - 5267

JO - Climate Dynamics

JF - Climate Dynamics

SN - 0930-7575

IS - 9-10

ER -