TY - JOUR
T1 - Assessment of environmental risks from toxic and nontoxic stressors; a proposed concept for a risk-based management tool for offshore drilling discharges
AU - Smit, M.G.D.
AU - Jak, R.G.
AU - Rye, H.
AU - Frost, T.K.
AU - Singsaas, I.
AU - Karman, C.C.
PY - 2008
Y1 - 2008
N2 - In order to improve the ecological status of aquatic systems, both toxic (e.g., chemical) and nontoxic stressors (e.g., suspended particles) should be evaluated. This paper describes an approach to environmental risk assessment of drilling discharges to the sea. These discharges might lead to concentrations of toxic compounds and suspended clay particles in the water compartment and concentrations of toxic compounds, burial of biota, change in sediment structure, and oxygen depletion in marine sediments. The main challenges were to apply existing protocols for environmental risk assessment to nontoxic stressors and to combine risks arising from exposure to these stressors with risk from chemical exposure. The defined approach is based on species sensitivity distributions (SSDs). In addition, precautionary principles from the EU-Technical Guidance Document were incorporated to assure that the method is acceptable in a regulatory context. For all stressors a protocol was defined to construct an SSD for no observed effect concentrations (or levels; NOEC(L)-SSD) to allow for the calculation of the potentially affected fraction of species from predicted exposures. Depending on the availability of data, a NOEC-SSD for toxicants can either be directly based on available NOECs or constructed from the predicted no effect concentration and the variation in sensitivity among species. For nontoxic stressors a NOEL-SSD can be extrapolated from an SSD based on effect or field data. Potentially affected fractions of species at predicted exposures are combined into an overall risk estimate. The developed approach facilitates environmental management of drilling discharges and can be applied to define risk-mitigating measures for both toxic and nontoxic stress.
AB - In order to improve the ecological status of aquatic systems, both toxic (e.g., chemical) and nontoxic stressors (e.g., suspended particles) should be evaluated. This paper describes an approach to environmental risk assessment of drilling discharges to the sea. These discharges might lead to concentrations of toxic compounds and suspended clay particles in the water compartment and concentrations of toxic compounds, burial of biota, change in sediment structure, and oxygen depletion in marine sediments. The main challenges were to apply existing protocols for environmental risk assessment to nontoxic stressors and to combine risks arising from exposure to these stressors with risk from chemical exposure. The defined approach is based on species sensitivity distributions (SSDs). In addition, precautionary principles from the EU-Technical Guidance Document were incorporated to assure that the method is acceptable in a regulatory context. For all stressors a protocol was defined to construct an SSD for no observed effect concentrations (or levels; NOEC(L)-SSD) to allow for the calculation of the potentially affected fraction of species from predicted exposures. Depending on the availability of data, a NOEC-SSD for toxicants can either be directly based on available NOECs or constructed from the predicted no effect concentration and the variation in sensitivity among species. For nontoxic stressors a NOEL-SSD can be extrapolated from an SSD based on effect or field data. Potentially affected fractions of species at predicted exposures are combined into an overall risk estimate. The developed approach facilitates environmental management of drilling discharges and can be applied to define risk-mitigating measures for both toxic and nontoxic stress.
KW - Drilling discharges
KW - ERMS
KW - Nontoxic stress
KW - Risk assessment
KW - Species sensitivity distributions
U2 - 10.1897/IEAM_2007-036.1
DO - 10.1897/IEAM_2007-036.1
M3 - Article
SN - 1551-3793
VL - 4
SP - 177
EP - 183
JO - Integrated Environmental Assessment and Management
JF - Integrated Environmental Assessment and Management
IS - 2
ER -