Assessing nitrogen circularity in food systems in the North China Plain

Chuanlan Tang, O. van Hal, Yong Hou*, Simon J. Oosting, Pierre J. Gerber

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

2 Citations (Scopus)

Abstract

Enhancing nitrogen (N) circularity is crucial to mitigate the environmental impacts of N losses in food systems. Substance flow analysis (SFA) effectively assesses N flows, but its application to evaluating food system circularity in China remains limited. We used a SFA model of food system with detailed representation of animals and waste in the North China Plain, an agricultural-intensive area, to assess eight circularity indicators. Findings revealed that the area imported 49 % of feed N yet maintained food N self-sufficiency by producing 110 % of consumed food N. Nitrogen Use Efficiency was 19 %, with 56 % of waste N recycled, contributing half and one-third of fertilizer and feed N inputs. Furthermore, circularity performance varied among prefecture-level cities, with better outcomes in agriculturally active, less populated, and less urbanized areas. We illustrate SFA's value in assessing circularity in Chinese food systems while advocating for improved model accuracy and complementary indicators, emphasizing tailored strategies.

Original languageEnglish
Article number108015
Number of pages12
JournalResources, Conservation and Recycling
Volume213
DOIs
Publication statusPublished - Feb 2025

Keywords

  • Circularity indicators
  • Food systems
  • Nitrogen circularity
  • Prefecture-level city type
  • Substance flow analysis

Fingerprint

Dive into the research topics of 'Assessing nitrogen circularity in food systems in the North China Plain'. Together they form a unique fingerprint.

Cite this