Assessing methane emission from dairy cows : modeling and experimental approaches on rumen microbial metabolism

Henk J. Lingen

Research output: Thesisinternal PhD, WUAcademic

Abstract

Methane (CH4) is a greenhouse gas (GHG) with a global warming potential of 28 CO2 equivalents. The livestock sector was estimated to emit 7.1 gigatonnes of CO2 equivalents, which is approximately 14.5% of total global anthropogenic GHG emissions. Enteric CH4 production is the main source of GHG emissions from dairy cattle, representing 46% of the global GHG emissions in dairy supply chains. Dairy production has great value in view of the ability of ruminants to effectively turn human inedible biomass into human edible food and to produce food from non-arable land. Consequently, there is an urgent need to develop strategies to decrease dairy cattle enteric CH4 emission. Evaluation of these strategies requires meticulous quantification and increased understanding of anaerobic fermentation and methanogenesis in the rumen ecosystem. The overall aim of this PhD research was, therefore, to quantitatively evaluate enteric CH4 emission from dairy cows as affected by feeding and rumen microbial metabolism.

A meta-analysis was performed to quantify relationships between enteric CH4 yield (per unit of feed and unit of milk) and milk FA profile in dairy cattle and to develop equations to predict CH4 yield based on milk FA profile of cows fed a wide variety of diets. Various milk FA concentrations were significantly or tended to be positively or negatively related to CH4 yield per unit of feed or milk. Mixed model multiple regression resulted in various milk FA included in optimal equations to predict CH4 yield per unit of feed and per unit of milk. These regression equations indicated a moderate potential for using milk FA profile to predict CH4 yield.

For the development of a mechanistic model of CH4 production in the rumen, the thermodynamic control of pH2 on reaction rates of specific fermentation pathways, NADH oxidation and methanogenesis was theoretically explored. This control was determined using the thermodynamic potential factor (FT), which is a dimensionless factor that corrects a predicted kinetic reaction rate for the thermodynamic control exerted. The thermodynamic feasibility of these microbial conversions showed that the control of pH2 on individual VFA produced and associated yield of H2 and CH4 cannot be explained without considering NADH oxidation, with a considerable effect of pH.

For obtaining experimental support of the conclusions drawn from the theoretical exploration, diurnal patterns of gaseous and dissolved metabolite concentrations in the bovine rumen, H2 and CH4 emitted, and the rumen microbiota were monitored. In addition, the effect of dietary inclusion of linseed oil on these patterns was assessed. An in vivo experiment with rumen cannulated dairy cows was performed to study the anaerobic metabolism and the microbiota composition in the rumen. A 100-fold increase in pH2 in the rumen headspace was observed at 0.5 h after feeding, followed by a decline. Qualitatively similar patterns after feeding were observed for H2 and CH4 emission, ethanol and lactate concentrations, and propionate molar proportion, whereas an opposite pattern was seen for acetate molar proportion. Associated with these patterns, a temporal biphasic change in the microbial composition was observed as based on 16S ribosomal RNA with certain taxa specifically associated with each phase. Bacterial concentrations were affected by time and increased by linseed oil supplementation. Archaeal concentrations tended to be affected by time and were not affected by diet, despite linseed oil supplementation tending to decrease the partial pressure and emission of CH4 and tending to increase propionate molar proportion. The various diurnal profiles that were monitored support the key role of the NAD+ to NADH ratio in rumen fermentation and the importance of diurnal dynamics when understanding VFA, H2 and CH4 production.

A dynamic mechanistic model was developed, in which the thermodynamic control of pH2 on VFA fermentation pathways, and methanogenesis in the bovine rumen are incorporated. The model represents substrate degradation, microbial fermentation and methanogenesis in the rumen, with the type of VFA formed to be controlled by the NAD+  to NADH ratio, which in turn is controlled by pH2. Feed composition and feed intake rate representing a twice daily feeding regime were used as model input. The model predicted a marked peak in pH2 after feeding that rapidly declined in time. This peak in pH2 caused a decrease in NAD+ to NADH ratio followed by an increased propionate molar proportion at the expense of acetate molar proportion. In response to feeding, the model predicted a sudden increase and a steady decrease in CH4 production in time. The pattern of CH4 emission rate followed the patterns of pH2 and H2 emission rate, but its magnitude of increase in response to feeding was less pronounced. A global sensitivity analysis indicated the parameter that determines the NADH oxidation rate to explain the most substantial part of the variation of predicted daily CH4 emission. The modeling effort provides the integration of more detailed knowledge than accomplished in previous rumen fermentation models and enables assessment of diurnal dynamics of rumen metabolic pathways yielding VFA, H2 and CH4.

For assessing the general value of the research reported in this thesis, the potential for predicting enteric CH4 emission from dairy cattle based on milk FA profile was discussed in the light of published studies and compared with empirical modeling of enteric CH4 based on feed input. Moreover, the concept of NAD-controlled fermentation was considered in a more general perspective by comparing the rumen ecosystem with bioreactor systems. Furthermore, the feasibility of the developed models as an alternative for IPCC tiered approaches was explored. In conclusion, the research reported in this thesis contributes to an increased understanding of rumen fermentation and microbial metabolism, and has provides a basis to further improve prediction models of enteric CH4 emissions from dairy cattle.

LanguageEnglish
QualificationDoctor of Philosophy
Awarding Institution
  • Wageningen University
Supervisors/Advisors
  • Hendriks, Wouter, Promotor
  • Dijkstra, Jan, Co-promotor
  • Bannink, Andre, Co-promotor
  • Plugge, Caroline, Co-promotor
Award date28 Apr 2017
Place of PublicationWageningen
Publisher
Print ISBNs9789463431590
DOIs
Publication statusPublished - 2017

Fingerprint

methane
rumen
dairy cows
methane production
metabolism
milk
thermodynamics
dairy cattle
fermentation
linseed oil
greenhouse gas emissions
propionates
rumen fermentation
mechanistic models
oxidation
carbon dioxide
acetates
feed composition
microorganisms
hydrogen production

Keywords

  • dairy cows
  • methane
  • emission
  • microbial degradation
  • rumen metabolism
  • rumen fermentation
  • models
  • fatty acids
  • biochemical pathways
  • animal nutrition
  • nutrition physiology

Cite this

@phdthesis{aa7d8f1cf54b4f4db3bfe91b5cd6789d,
title = "Assessing methane emission from dairy cows : modeling and experimental approaches on rumen microbial metabolism",
abstract = "Methane (CH4) is a greenhouse gas (GHG) with a global warming potential of 28 CO2 equivalents. The livestock sector was estimated to emit 7.1 gigatonnes of CO2 equivalents, which is approximately 14.5{\%} of total global anthropogenic GHG emissions. Enteric CH4 production is the main source of GHG emissions from dairy cattle, representing 46{\%} of the global GHG emissions in dairy supply chains. Dairy production has great value in view of the ability of ruminants to effectively turn human inedible biomass into human edible food and to produce food from non-arable land. Consequently, there is an urgent need to develop strategies to decrease dairy cattle enteric CH4 emission. Evaluation of these strategies requires meticulous quantification and increased understanding of anaerobic fermentation and methanogenesis in the rumen ecosystem. The overall aim of this PhD research was, therefore, to quantitatively evaluate enteric CH4 emission from dairy cows as affected by feeding and rumen microbial metabolism. A meta-analysis was performed to quantify relationships between enteric CH4 yield (per unit of feed and unit of milk) and milk FA profile in dairy cattle and to develop equations to predict CH4 yield based on milk FA profile of cows fed a wide variety of diets. Various milk FA concentrations were significantly or tended to be positively or negatively related to CH4 yield per unit of feed or milk. Mixed model multiple regression resulted in various milk FA included in optimal equations to predict CH4 yield per unit of feed and per unit of milk. These regression equations indicated a moderate potential for using milk FA profile to predict CH4 yield. For the development of a mechanistic model of CH4 production in the rumen, the thermodynamic control of pH2 on reaction rates of specific fermentation pathways, NADH oxidation and methanogenesis was theoretically explored. This control was determined using the thermodynamic potential factor (FT), which is a dimensionless factor that corrects a predicted kinetic reaction rate for the thermodynamic control exerted. The thermodynamic feasibility of these microbial conversions showed that the control of pH2 on individual VFA produced and associated yield of H2 and CH4 cannot be explained without considering NADH oxidation, with a considerable effect of pH. For obtaining experimental support of the conclusions drawn from the theoretical exploration, diurnal patterns of gaseous and dissolved metabolite concentrations in the bovine rumen, H2 and CH4 emitted, and the rumen microbiota were monitored. In addition, the effect of dietary inclusion of linseed oil on these patterns was assessed. An in vivo experiment with rumen cannulated dairy cows was performed to study the anaerobic metabolism and the microbiota composition in the rumen. A 100-fold increase in pH2 in the rumen headspace was observed at 0.5 h after feeding, followed by a decline. Qualitatively similar patterns after feeding were observed for H2 and CH4 emission, ethanol and lactate concentrations, and propionate molar proportion, whereas an opposite pattern was seen for acetate molar proportion. Associated with these patterns, a temporal biphasic change in the microbial composition was observed as based on 16S ribosomal RNA with certain taxa specifically associated with each phase. Bacterial concentrations were affected by time and increased by linseed oil supplementation. Archaeal concentrations tended to be affected by time and were not affected by diet, despite linseed oil supplementation tending to decrease the partial pressure and emission of CH4 and tending to increase propionate molar proportion. The various diurnal profiles that were monitored support the key role of the NAD+ to NADH ratio in rumen fermentation and the importance of diurnal dynamics when understanding VFA, H2 and CH4 production. A dynamic mechanistic model was developed, in which the thermodynamic control of pH2 on VFA fermentation pathways, and methanogenesis in the bovine rumen are incorporated. The model represents substrate degradation, microbial fermentation and methanogenesis in the rumen, with the type of VFA formed to be controlled by the NAD+  to NADH ratio, which in turn is controlled by pH2. Feed composition and feed intake rate representing a twice daily feeding regime were used as model input. The model predicted a marked peak in pH2 after feeding that rapidly declined in time. This peak in pH2 caused a decrease in NAD+ to NADH ratio followed by an increased propionate molar proportion at the expense of acetate molar proportion. In response to feeding, the model predicted a sudden increase and a steady decrease in CH4 production in time. The pattern of CH4 emission rate followed the patterns of pH2 and H2 emission rate, but its magnitude of increase in response to feeding was less pronounced. A global sensitivity analysis indicated the parameter that determines the NADH oxidation rate to explain the most substantial part of the variation of predicted daily CH4 emission. The modeling effort provides the integration of more detailed knowledge than accomplished in previous rumen fermentation models and enables assessment of diurnal dynamics of rumen metabolic pathways yielding VFA, H2 and CH4. For assessing the general value of the research reported in this thesis, the potential for predicting enteric CH4 emission from dairy cattle based on milk FA profile was discussed in the light of published studies and compared with empirical modeling of enteric CH4 based on feed input. Moreover, the concept of NAD-controlled fermentation was considered in a more general perspective by comparing the rumen ecosystem with bioreactor systems. Furthermore, the feasibility of the developed models as an alternative for IPCC tiered approaches was explored. In conclusion, the research reported in this thesis contributes to an increased understanding of rumen fermentation and microbial metabolism, and has provides a basis to further improve prediction models of enteric CH4 emissions from dairy cattle.",
keywords = "dairy cows, methane, emission, microbial degradation, rumen metabolism, rumen fermentation, models, fatty acids, biochemical pathways, animal nutrition, nutrition physiology, melkkoeien, methaan, emissie, microbi{\"e}le afbraak, pensmetabolisme, pensfermentatie, modellen, vetzuren, biochemische omzettingen, diervoeding, voedingsfysiologie",
author = "Lingen, {Henk J.}",
note = "WU thesis 6630 Includes bibliographic references. - With summaries in Dutch and English",
year = "2017",
doi = "10.18174/411612",
language = "English",
isbn = "9789463431590",
publisher = "Wageningen University",
school = "Wageningen University",

}

Assessing methane emission from dairy cows : modeling and experimental approaches on rumen microbial metabolism. / Lingen, Henk J.

Wageningen : Wageningen University, 2017. 207 p.

Research output: Thesisinternal PhD, WUAcademic

TY - THES

T1 - Assessing methane emission from dairy cows : modeling and experimental approaches on rumen microbial metabolism

AU - Lingen, Henk J.

N1 - WU thesis 6630 Includes bibliographic references. - With summaries in Dutch and English

PY - 2017

Y1 - 2017

N2 - Methane (CH4) is a greenhouse gas (GHG) with a global warming potential of 28 CO2 equivalents. The livestock sector was estimated to emit 7.1 gigatonnes of CO2 equivalents, which is approximately 14.5% of total global anthropogenic GHG emissions. Enteric CH4 production is the main source of GHG emissions from dairy cattle, representing 46% of the global GHG emissions in dairy supply chains. Dairy production has great value in view of the ability of ruminants to effectively turn human inedible biomass into human edible food and to produce food from non-arable land. Consequently, there is an urgent need to develop strategies to decrease dairy cattle enteric CH4 emission. Evaluation of these strategies requires meticulous quantification and increased understanding of anaerobic fermentation and methanogenesis in the rumen ecosystem. The overall aim of this PhD research was, therefore, to quantitatively evaluate enteric CH4 emission from dairy cows as affected by feeding and rumen microbial metabolism. A meta-analysis was performed to quantify relationships between enteric CH4 yield (per unit of feed and unit of milk) and milk FA profile in dairy cattle and to develop equations to predict CH4 yield based on milk FA profile of cows fed a wide variety of diets. Various milk FA concentrations were significantly or tended to be positively or negatively related to CH4 yield per unit of feed or milk. Mixed model multiple regression resulted in various milk FA included in optimal equations to predict CH4 yield per unit of feed and per unit of milk. These regression equations indicated a moderate potential for using milk FA profile to predict CH4 yield. For the development of a mechanistic model of CH4 production in the rumen, the thermodynamic control of pH2 on reaction rates of specific fermentation pathways, NADH oxidation and methanogenesis was theoretically explored. This control was determined using the thermodynamic potential factor (FT), which is a dimensionless factor that corrects a predicted kinetic reaction rate for the thermodynamic control exerted. The thermodynamic feasibility of these microbial conversions showed that the control of pH2 on individual VFA produced and associated yield of H2 and CH4 cannot be explained without considering NADH oxidation, with a considerable effect of pH. For obtaining experimental support of the conclusions drawn from the theoretical exploration, diurnal patterns of gaseous and dissolved metabolite concentrations in the bovine rumen, H2 and CH4 emitted, and the rumen microbiota were monitored. In addition, the effect of dietary inclusion of linseed oil on these patterns was assessed. An in vivo experiment with rumen cannulated dairy cows was performed to study the anaerobic metabolism and the microbiota composition in the rumen. A 100-fold increase in pH2 in the rumen headspace was observed at 0.5 h after feeding, followed by a decline. Qualitatively similar patterns after feeding were observed for H2 and CH4 emission, ethanol and lactate concentrations, and propionate molar proportion, whereas an opposite pattern was seen for acetate molar proportion. Associated with these patterns, a temporal biphasic change in the microbial composition was observed as based on 16S ribosomal RNA with certain taxa specifically associated with each phase. Bacterial concentrations were affected by time and increased by linseed oil supplementation. Archaeal concentrations tended to be affected by time and were not affected by diet, despite linseed oil supplementation tending to decrease the partial pressure and emission of CH4 and tending to increase propionate molar proportion. The various diurnal profiles that were monitored support the key role of the NAD+ to NADH ratio in rumen fermentation and the importance of diurnal dynamics when understanding VFA, H2 and CH4 production. A dynamic mechanistic model was developed, in which the thermodynamic control of pH2 on VFA fermentation pathways, and methanogenesis in the bovine rumen are incorporated. The model represents substrate degradation, microbial fermentation and methanogenesis in the rumen, with the type of VFA formed to be controlled by the NAD+  to NADH ratio, which in turn is controlled by pH2. Feed composition and feed intake rate representing a twice daily feeding regime were used as model input. The model predicted a marked peak in pH2 after feeding that rapidly declined in time. This peak in pH2 caused a decrease in NAD+ to NADH ratio followed by an increased propionate molar proportion at the expense of acetate molar proportion. In response to feeding, the model predicted a sudden increase and a steady decrease in CH4 production in time. The pattern of CH4 emission rate followed the patterns of pH2 and H2 emission rate, but its magnitude of increase in response to feeding was less pronounced. A global sensitivity analysis indicated the parameter that determines the NADH oxidation rate to explain the most substantial part of the variation of predicted daily CH4 emission. The modeling effort provides the integration of more detailed knowledge than accomplished in previous rumen fermentation models and enables assessment of diurnal dynamics of rumen metabolic pathways yielding VFA, H2 and CH4. For assessing the general value of the research reported in this thesis, the potential for predicting enteric CH4 emission from dairy cattle based on milk FA profile was discussed in the light of published studies and compared with empirical modeling of enteric CH4 based on feed input. Moreover, the concept of NAD-controlled fermentation was considered in a more general perspective by comparing the rumen ecosystem with bioreactor systems. Furthermore, the feasibility of the developed models as an alternative for IPCC tiered approaches was explored. In conclusion, the research reported in this thesis contributes to an increased understanding of rumen fermentation and microbial metabolism, and has provides a basis to further improve prediction models of enteric CH4 emissions from dairy cattle.

AB - Methane (CH4) is a greenhouse gas (GHG) with a global warming potential of 28 CO2 equivalents. The livestock sector was estimated to emit 7.1 gigatonnes of CO2 equivalents, which is approximately 14.5% of total global anthropogenic GHG emissions. Enteric CH4 production is the main source of GHG emissions from dairy cattle, representing 46% of the global GHG emissions in dairy supply chains. Dairy production has great value in view of the ability of ruminants to effectively turn human inedible biomass into human edible food and to produce food from non-arable land. Consequently, there is an urgent need to develop strategies to decrease dairy cattle enteric CH4 emission. Evaluation of these strategies requires meticulous quantification and increased understanding of anaerobic fermentation and methanogenesis in the rumen ecosystem. The overall aim of this PhD research was, therefore, to quantitatively evaluate enteric CH4 emission from dairy cows as affected by feeding and rumen microbial metabolism. A meta-analysis was performed to quantify relationships between enteric CH4 yield (per unit of feed and unit of milk) and milk FA profile in dairy cattle and to develop equations to predict CH4 yield based on milk FA profile of cows fed a wide variety of diets. Various milk FA concentrations were significantly or tended to be positively or negatively related to CH4 yield per unit of feed or milk. Mixed model multiple regression resulted in various milk FA included in optimal equations to predict CH4 yield per unit of feed and per unit of milk. These regression equations indicated a moderate potential for using milk FA profile to predict CH4 yield. For the development of a mechanistic model of CH4 production in the rumen, the thermodynamic control of pH2 on reaction rates of specific fermentation pathways, NADH oxidation and methanogenesis was theoretically explored. This control was determined using the thermodynamic potential factor (FT), which is a dimensionless factor that corrects a predicted kinetic reaction rate for the thermodynamic control exerted. The thermodynamic feasibility of these microbial conversions showed that the control of pH2 on individual VFA produced and associated yield of H2 and CH4 cannot be explained without considering NADH oxidation, with a considerable effect of pH. For obtaining experimental support of the conclusions drawn from the theoretical exploration, diurnal patterns of gaseous and dissolved metabolite concentrations in the bovine rumen, H2 and CH4 emitted, and the rumen microbiota were monitored. In addition, the effect of dietary inclusion of linseed oil on these patterns was assessed. An in vivo experiment with rumen cannulated dairy cows was performed to study the anaerobic metabolism and the microbiota composition in the rumen. A 100-fold increase in pH2 in the rumen headspace was observed at 0.5 h after feeding, followed by a decline. Qualitatively similar patterns after feeding were observed for H2 and CH4 emission, ethanol and lactate concentrations, and propionate molar proportion, whereas an opposite pattern was seen for acetate molar proportion. Associated with these patterns, a temporal biphasic change in the microbial composition was observed as based on 16S ribosomal RNA with certain taxa specifically associated with each phase. Bacterial concentrations were affected by time and increased by linseed oil supplementation. Archaeal concentrations tended to be affected by time and were not affected by diet, despite linseed oil supplementation tending to decrease the partial pressure and emission of CH4 and tending to increase propionate molar proportion. The various diurnal profiles that were monitored support the key role of the NAD+ to NADH ratio in rumen fermentation and the importance of diurnal dynamics when understanding VFA, H2 and CH4 production. A dynamic mechanistic model was developed, in which the thermodynamic control of pH2 on VFA fermentation pathways, and methanogenesis in the bovine rumen are incorporated. The model represents substrate degradation, microbial fermentation and methanogenesis in the rumen, with the type of VFA formed to be controlled by the NAD+  to NADH ratio, which in turn is controlled by pH2. Feed composition and feed intake rate representing a twice daily feeding regime were used as model input. The model predicted a marked peak in pH2 after feeding that rapidly declined in time. This peak in pH2 caused a decrease in NAD+ to NADH ratio followed by an increased propionate molar proportion at the expense of acetate molar proportion. In response to feeding, the model predicted a sudden increase and a steady decrease in CH4 production in time. The pattern of CH4 emission rate followed the patterns of pH2 and H2 emission rate, but its magnitude of increase in response to feeding was less pronounced. A global sensitivity analysis indicated the parameter that determines the NADH oxidation rate to explain the most substantial part of the variation of predicted daily CH4 emission. The modeling effort provides the integration of more detailed knowledge than accomplished in previous rumen fermentation models and enables assessment of diurnal dynamics of rumen metabolic pathways yielding VFA, H2 and CH4. For assessing the general value of the research reported in this thesis, the potential for predicting enteric CH4 emission from dairy cattle based on milk FA profile was discussed in the light of published studies and compared with empirical modeling of enteric CH4 based on feed input. Moreover, the concept of NAD-controlled fermentation was considered in a more general perspective by comparing the rumen ecosystem with bioreactor systems. Furthermore, the feasibility of the developed models as an alternative for IPCC tiered approaches was explored. In conclusion, the research reported in this thesis contributes to an increased understanding of rumen fermentation and microbial metabolism, and has provides a basis to further improve prediction models of enteric CH4 emissions from dairy cattle.

KW - dairy cows

KW - methane

KW - emission

KW - microbial degradation

KW - rumen metabolism

KW - rumen fermentation

KW - models

KW - fatty acids

KW - biochemical pathways

KW - animal nutrition

KW - nutrition physiology

KW - melkkoeien

KW - methaan

KW - emissie

KW - microbiële afbraak

KW - pensmetabolisme

KW - pensfermentatie

KW - modellen

KW - vetzuren

KW - biochemische omzettingen

KW - diervoeding

KW - voedingsfysiologie

U2 - 10.18174/411612

DO - 10.18174/411612

M3 - internal PhD, WU

SN - 9789463431590

PB - Wageningen University

CY - Wageningen

ER -