Assessing land-based mitigation implications for biodiversity

Sarahi Nunez*, Jana Verboom, Rob Alkemade

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

The Paris Agreement to keep global temperature increase to well-below 2 °C and to pursue efforts to limit it to 1.5 °C requires to formulate ambitious climate-change mitigation scenarios to reduce CO2 emissions and to enhance carbon sequestration. These scenarios likely require significant land-use change. Failing to mitigate climate change will result in an unprecedented warming with significant biodiversity loss. The mitigation potential on land is high. However, how land-based mitigation options potentially affect biodiversity is poorly understood. Some land-based mitigation options could also counter the biodiversity loss. Here we reviewed the recently scientific literature to assess twenty land-based mitigation options that are implemented in different mitigation pathways to comply with the Paris Agreement for their biodiversity impacts by using the Mean Species Abundance (MSALU) indicator for land use. We showed the likely land-use transition and potential MSALU changes for each option, compared their carbon sequestration opportunities (tC per ha) and assessed the resulting biodiversity change in two case scenarios. Our results showed that most options benefit biodiversity. Reforestation of cultivated and managed areas together with restoration of wetlands deliver the largest MSALU increases, if land is allowed to reach a mature state over time. A quarter of the assessed options, including intensification of agricultural areas and bioenergy with carbon capture and storage, decreased MSALU. Options, such as afforestation and reduced deforestation, either positively or negatively affected MSALU. This depends on their local implementation and adopted forest-conservation schemes. Comparing the different options showed that avoiding deforestation by implementing agroforestry at the expense of pastures delivered both the largest MSALU increases and the highest carbon sequestration opportunities. However, agroforestry that leads to deforestation, enhanced carbon sequestration slightly but with a marginal MSALU increase. This stresses the importance of avoiding forest conversion. Our study advances the understanding on current and future benefits and adverse effects of land-based mitigation options on biodiversity. This certainly helps biodiversity conservation and determines the regions with large land-based mitigation potential.

Original languageEnglish
Pages (from-to)68-76
Number of pages9
JournalEnvironmental Science and Policy
Volume106
DOIs
Publication statusPublished - 1 Apr 2020

Fingerprint

biodiversity
mitigation
carbon sequestration
deforestation
land use
agroforestry
scenario
climate change
conservation
bioenergy
agricultural area
land
technical literature
reforestation
afforestation
wetland
restoration
land use change
pasture
agricultural land

Keywords

  • Biodiversity change
  • Carbon sequestration
  • Climate change
  • Land-based mitigation

Cite this

@article{144f2d1100554211af1716950da4c00b,
title = "Assessing land-based mitigation implications for biodiversity",
abstract = "The Paris Agreement to keep global temperature increase to well-below 2 °C and to pursue efforts to limit it to 1.5 °C requires to formulate ambitious climate-change mitigation scenarios to reduce CO2 emissions and to enhance carbon sequestration. These scenarios likely require significant land-use change. Failing to mitigate climate change will result in an unprecedented warming with significant biodiversity loss. The mitigation potential on land is high. However, how land-based mitigation options potentially affect biodiversity is poorly understood. Some land-based mitigation options could also counter the biodiversity loss. Here we reviewed the recently scientific literature to assess twenty land-based mitigation options that are implemented in different mitigation pathways to comply with the Paris Agreement for their biodiversity impacts by using the Mean Species Abundance (MSALU) indicator for land use. We showed the likely land-use transition and potential MSALU changes for each option, compared their carbon sequestration opportunities (tC per ha) and assessed the resulting biodiversity change in two case scenarios. Our results showed that most options benefit biodiversity. Reforestation of cultivated and managed areas together with restoration of wetlands deliver the largest MSALU increases, if land is allowed to reach a mature state over time. A quarter of the assessed options, including intensification of agricultural areas and bioenergy with carbon capture and storage, decreased MSALU. Options, such as afforestation and reduced deforestation, either positively or negatively affected MSALU. This depends on their local implementation and adopted forest-conservation schemes. Comparing the different options showed that avoiding deforestation by implementing agroforestry at the expense of pastures delivered both the largest MSALU increases and the highest carbon sequestration opportunities. However, agroforestry that leads to deforestation, enhanced carbon sequestration slightly but with a marginal MSALU increase. This stresses the importance of avoiding forest conversion. Our study advances the understanding on current and future benefits and adverse effects of land-based mitigation options on biodiversity. This certainly helps biodiversity conservation and determines the regions with large land-based mitigation potential.",
keywords = "Biodiversity change, Carbon sequestration, Climate change, Land-based mitigation",
author = "Sarahi Nunez and Jana Verboom and Rob Alkemade",
year = "2020",
month = "4",
day = "1",
doi = "10.1016/j.envsci.2020.01.006",
language = "English",
volume = "106",
pages = "68--76",
journal = "Environmental Science & Policy",
issn = "1462-9011",
publisher = "Elsevier",

}

Assessing land-based mitigation implications for biodiversity. / Nunez, Sarahi; Verboom, Jana; Alkemade, Rob.

In: Environmental Science and Policy, Vol. 106, 01.04.2020, p. 68-76.

Research output: Contribution to journalArticleAcademicpeer-review

TY - JOUR

T1 - Assessing land-based mitigation implications for biodiversity

AU - Nunez, Sarahi

AU - Verboom, Jana

AU - Alkemade, Rob

PY - 2020/4/1

Y1 - 2020/4/1

N2 - The Paris Agreement to keep global temperature increase to well-below 2 °C and to pursue efforts to limit it to 1.5 °C requires to formulate ambitious climate-change mitigation scenarios to reduce CO2 emissions and to enhance carbon sequestration. These scenarios likely require significant land-use change. Failing to mitigate climate change will result in an unprecedented warming with significant biodiversity loss. The mitigation potential on land is high. However, how land-based mitigation options potentially affect biodiversity is poorly understood. Some land-based mitigation options could also counter the biodiversity loss. Here we reviewed the recently scientific literature to assess twenty land-based mitigation options that are implemented in different mitigation pathways to comply with the Paris Agreement for their biodiversity impacts by using the Mean Species Abundance (MSALU) indicator for land use. We showed the likely land-use transition and potential MSALU changes for each option, compared their carbon sequestration opportunities (tC per ha) and assessed the resulting biodiversity change in two case scenarios. Our results showed that most options benefit biodiversity. Reforestation of cultivated and managed areas together with restoration of wetlands deliver the largest MSALU increases, if land is allowed to reach a mature state over time. A quarter of the assessed options, including intensification of agricultural areas and bioenergy with carbon capture and storage, decreased MSALU. Options, such as afforestation and reduced deforestation, either positively or negatively affected MSALU. This depends on their local implementation and adopted forest-conservation schemes. Comparing the different options showed that avoiding deforestation by implementing agroforestry at the expense of pastures delivered both the largest MSALU increases and the highest carbon sequestration opportunities. However, agroforestry that leads to deforestation, enhanced carbon sequestration slightly but with a marginal MSALU increase. This stresses the importance of avoiding forest conversion. Our study advances the understanding on current and future benefits and adverse effects of land-based mitigation options on biodiversity. This certainly helps biodiversity conservation and determines the regions with large land-based mitigation potential.

AB - The Paris Agreement to keep global temperature increase to well-below 2 °C and to pursue efforts to limit it to 1.5 °C requires to formulate ambitious climate-change mitigation scenarios to reduce CO2 emissions and to enhance carbon sequestration. These scenarios likely require significant land-use change. Failing to mitigate climate change will result in an unprecedented warming with significant biodiversity loss. The mitigation potential on land is high. However, how land-based mitigation options potentially affect biodiversity is poorly understood. Some land-based mitigation options could also counter the biodiversity loss. Here we reviewed the recently scientific literature to assess twenty land-based mitigation options that are implemented in different mitigation pathways to comply with the Paris Agreement for their biodiversity impacts by using the Mean Species Abundance (MSALU) indicator for land use. We showed the likely land-use transition and potential MSALU changes for each option, compared their carbon sequestration opportunities (tC per ha) and assessed the resulting biodiversity change in two case scenarios. Our results showed that most options benefit biodiversity. Reforestation of cultivated and managed areas together with restoration of wetlands deliver the largest MSALU increases, if land is allowed to reach a mature state over time. A quarter of the assessed options, including intensification of agricultural areas and bioenergy with carbon capture and storage, decreased MSALU. Options, such as afforestation and reduced deforestation, either positively or negatively affected MSALU. This depends on their local implementation and adopted forest-conservation schemes. Comparing the different options showed that avoiding deforestation by implementing agroforestry at the expense of pastures delivered both the largest MSALU increases and the highest carbon sequestration opportunities. However, agroforestry that leads to deforestation, enhanced carbon sequestration slightly but with a marginal MSALU increase. This stresses the importance of avoiding forest conversion. Our study advances the understanding on current and future benefits and adverse effects of land-based mitigation options on biodiversity. This certainly helps biodiversity conservation and determines the regions with large land-based mitigation potential.

KW - Biodiversity change

KW - Carbon sequestration

KW - Climate change

KW - Land-based mitigation

U2 - 10.1016/j.envsci.2020.01.006

DO - 10.1016/j.envsci.2020.01.006

M3 - Article

VL - 106

SP - 68

EP - 76

JO - Environmental Science & Policy

JF - Environmental Science & Policy

SN - 1462-9011

ER -