TY - JOUR
T1 - Architecture of broiler breeder energy partitioning models
AU - Afrouziyeh, Mohammad
AU - Zukiwsky, Nicole M.
AU - You, Jihao
AU - Kwakkel, René P.
AU - Korver, Douglas R.
AU - Zuidhof, Martin J.
PY - 2022/1
Y1 - 2022/1
N2 - A robust model that estimates the ME intake over broiler breeder lifetime is essential for formulating diets with optimum nutrient levels. The experiment was conducted as a randomized controlled trial with 40 Ross 708 broiler breeder pullets reared on 1 of 10 target growth trajectories, which were designed with 2 levels of cumulative BW gain in prepubertal growth phase and 5 levels of timing of growth around puberty. This study investigated the effect of growth pattern on energy efficiency of birds and tested the effects of dividing data into daily, 4-d, weekly, 2-wk, and 3-wk periods and the inclusion of random terms associated with individual maintenance ME and ADG requirements, and age on ME partitioning model fit and predictive performance. Model [I] was: MEId = a × BWb + c × ADGp + d × ADGn + e × EM + ε, where MEId was daily ME intake (kcal/d); BW in kg; ADGp was positive ADG; ADGn was negative ADG (g/d); EM was egg mass (g/d); ε was the model residual. Models [II to IV] were nonlinear mixed models based on the model [I] with inclusion of a random term for individual maintenance requirement, age, and ADG, respectively. Model [II] – 3 wk was chosen as the most parsimonious based on lower autocorrelation bias, closer fit of the estimates to the actual data (lower model MSE and closer R2 to 1), and greater predictive performance among the models. Estimated ME partitioned to maintenance in model [II] – 3 wk was 100.47 ± 7.43 kcal/kg0.56, and the ME requirement for ADGp, ADGn, and EM were 3.49 ± 0.37; 3.16 ± 3.91; and 2.96 ± 0.13 kcal/g, respectively. Standard treatment had lower residual heat production (RHP; -0.68 kcal/kg BW0.56) than high early growth treatment (0.79 kcal/kg BW0.56), indicating greater efficiency in utilizing the ME consumed. Including random term associated with individual maintenance ME in a 3-wk chunk size provided a robust, biologically sound life-time energy partitioning model for breeders.
AB - A robust model that estimates the ME intake over broiler breeder lifetime is essential for formulating diets with optimum nutrient levels. The experiment was conducted as a randomized controlled trial with 40 Ross 708 broiler breeder pullets reared on 1 of 10 target growth trajectories, which were designed with 2 levels of cumulative BW gain in prepubertal growth phase and 5 levels of timing of growth around puberty. This study investigated the effect of growth pattern on energy efficiency of birds and tested the effects of dividing data into daily, 4-d, weekly, 2-wk, and 3-wk periods and the inclusion of random terms associated with individual maintenance ME and ADG requirements, and age on ME partitioning model fit and predictive performance. Model [I] was: MEId = a × BWb + c × ADGp + d × ADGn + e × EM + ε, where MEId was daily ME intake (kcal/d); BW in kg; ADGp was positive ADG; ADGn was negative ADG (g/d); EM was egg mass (g/d); ε was the model residual. Models [II to IV] were nonlinear mixed models based on the model [I] with inclusion of a random term for individual maintenance requirement, age, and ADG, respectively. Model [II] – 3 wk was chosen as the most parsimonious based on lower autocorrelation bias, closer fit of the estimates to the actual data (lower model MSE and closer R2 to 1), and greater predictive performance among the models. Estimated ME partitioned to maintenance in model [II] – 3 wk was 100.47 ± 7.43 kcal/kg0.56, and the ME requirement for ADGp, ADGn, and EM were 3.49 ± 0.37; 3.16 ± 3.91; and 2.96 ± 0.13 kcal/g, respectively. Standard treatment had lower residual heat production (RHP; -0.68 kcal/kg BW0.56) than high early growth treatment (0.79 kcal/kg BW0.56), indicating greater efficiency in utilizing the ME consumed. Including random term associated with individual maintenance ME in a 3-wk chunk size provided a robust, biologically sound life-time energy partitioning model for breeders.
KW - broiler breeder
KW - energy partitioning model
KW - feed restriction
KW - prediction optimization
KW - random term
U2 - 10.1016/j.psj.2021.101518
DO - 10.1016/j.psj.2021.101518
M3 - Article
AN - SCOPUS:85119603693
SN - 0032-5791
VL - 101
JO - Poultry Science
JF - Poultry Science
IS - 1
M1 - 101518
ER -