Abstract
Smart farming adopts advanced technology and the corresponding principles to increase the amount of production and economic returns, often also with the goal to reduce the impact on the environment. One of the key elements of smart farming is the farm management information systems (FMISs) that supports the automation of data acquisition and processing, monitoring, planning, decision making, documenting, and managing the farm operations. An increased number of FMISs now adopt internet of things (IoT) technology to further optimize the targeted business goals. Obviously IoT systems in agriculture typically have different functional and quality requirements such as choice of communication protocols, the data processing capacity, the security level, safety level, and time performance. For developing an IoT-based FMIS, it is important to design the proper architecture that meets the corresponding requirements. To guide the architect in designing the IoT based farm management information system that meets the business objectives a systematic approach is provided. To this end a design-driven research approach is adopted in which feature-driven domain analysis is used to model the various smart farming requirements. Further, based on a FMIS and IoT reference architectures the steps and the modeling approaches for designing IoT-based FMIS architectures are described. The approach is illustrated using two case studies on smart farming in Turkey, one for smart wheat production in Konya, and the other for smart green houses in Antalya.
Original language | English |
---|---|
Pages (from-to) | 926-958 |
Number of pages | 33 |
Journal | Precision Agriculture |
Volume | 20 |
Issue number | 5 |
Early online date | 11 Dec 2018 |
DOIs | |
Publication status | Published - Oct 2019 |
Keywords
- Architecture design
- Farm management information system
- Internet of things
- Smart farming