Appropriate homoplasy metrics in linked SSRs to predict an underestimation of demographic expansion times

Diego Ortega-Del Vecchyo*, Daniel Piñero, Lev Jardón-Barbolla, Joost van Heerwaarden

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

1 Citation (Scopus)

Abstract

Background: Homoplasy affects demographic inference estimates. This effect has been recognized and corrective methods have been developed. However, no studies so far have defined what homoplasy metrics best describe the effects on demographic inference, or have attempted to estimate such metrics in real data. Here we study how homoplasy in chloroplast microsatellites (cpSSR) affects inference of population expansion time. cpSSRs are popular markers for inferring historical demography in plants due to their high mutation rate and limited recombination. Results: In cpSSRs, homoplasy is usually quantified as the probability that two markers or haplotypes that are identical by state are not identical by descent (Homoplasy index, P). Here we propose a new measure of multi-locus homoplasy in linked SSR called Distance Homoplasy (DH), which measures the proportion of pairwise differences not observed due to homoplasy, and we compare it to P and its per cpSSR locus average, which we call Mean Size Homoplasy (MSH). We use simulations and analytical derivations to show that, out of the three homoplasy metrics analyzed, MSH and DH are more correlated to changes in the population expansion time and to the underestimation of that demographic parameter using cpSSR. We perform simulations to show that Approximate Bayesian Computation (ABC) can be used to obtain reasonable estimates of MSH and DH. Finally, we use ABC to estimate the expansion time, MSH and DH from a chloroplast SSR dataset in Pinus caribaea. To our knowledge, this is the first time that homoplasy has been estimated in population genetic data. Conclusions: We show that MSH and DH should be used to quantify how homoplasy affects estimates of population expansion time. We also demonstrate how ABC provides a methodology to estimate homoplasy in population genetic data.
Original languageEnglish
Article number213
JournalBMC Evolutionary Biology
Volume17
Issue number1
DOIs
Publication statusPublished - 2017

Keywords

  • Demography
  • Haplotypes
  • Homoplasy
  • SSRs

Fingerprint Dive into the research topics of 'Appropriate homoplasy metrics in linked SSRs to predict an underestimation of demographic expansion times'. Together they form a unique fingerprint.

  • Datasets

    HomoplasyMetrics

    Ortega-Del Vecchyo, D. (Creator), Piñero, D. (Creator), Jardón-Barbolla, L. (Creator) & van Heerwaarden, J. (Creator), Universidad Nacional Autonoma de Mexico, 2017

    Dataset

    Cite this