TY - JOUR
T1 - Antiviral Polymer Brushes by Visible-Light-Induced, Oxygen-Tolerant Covalent Surface Coating
AU - Kuzmyn, Andriy R.
AU - Teunissen, Lucas W.
AU - Kroese, Michiel V.
AU - Kant, Jet
AU - Venema, Sandra
AU - Zuilhof, Han
PY - 2022/11/1
Y1 - 2022/11/1
N2 - This work presents a novel route for creating metal-free antiviral coatings based on polymer brushes synthesized by surface-initiated photoinduced electron transfer-reversible addition-fragmentation chain transfer (SI-PET-RAFT) polymerization, applying eosin Y as a photocatalyst, water as a solvent, and visible light as a driving force. The polymer brushes were synthesized using N-[3-(decyldimethyl)-aminopropyl] methacrylamide bromide and carboxybetaine methacrylamide monomers. The chemical composition, thickness, roughness, and wettability of the resulting polymer brush coatings were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), water contact angle measurements, and ellipsometry. The antiviral properties of coatings were investigated by exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and avian influenza viruses, with further measurement of residual viable viral particles. The best performance was obtained with Cu surfaces, with a ca. 20-fold reduction of SARS-Cov-2 and a 50-fold reduction in avian influenza. On the polymer brush-modified surfaces, the number of viable virus particles decreased by about 5-6 times faster for avian flu and about 2-3 times faster for SARS-CoV-2, all compared to unmodified silicon surfaces. Interestingly, no significant differences were obtained between quaternary ammonium brushes and zwitterionic brushes.
AB - This work presents a novel route for creating metal-free antiviral coatings based on polymer brushes synthesized by surface-initiated photoinduced electron transfer-reversible addition-fragmentation chain transfer (SI-PET-RAFT) polymerization, applying eosin Y as a photocatalyst, water as a solvent, and visible light as a driving force. The polymer brushes were synthesized using N-[3-(decyldimethyl)-aminopropyl] methacrylamide bromide and carboxybetaine methacrylamide monomers. The chemical composition, thickness, roughness, and wettability of the resulting polymer brush coatings were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), water contact angle measurements, and ellipsometry. The antiviral properties of coatings were investigated by exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and avian influenza viruses, with further measurement of residual viable viral particles. The best performance was obtained with Cu surfaces, with a ca. 20-fold reduction of SARS-Cov-2 and a 50-fold reduction in avian influenza. On the polymer brush-modified surfaces, the number of viable virus particles decreased by about 5-6 times faster for avian flu and about 2-3 times faster for SARS-CoV-2, all compared to unmodified silicon surfaces. Interestingly, no significant differences were obtained between quaternary ammonium brushes and zwitterionic brushes.
U2 - 10.1021/acsomega.2c03214
DO - 10.1021/acsomega.2c03214
M3 - Article
AN - SCOPUS:85140890558
SN - 2470-1343
VL - 7
SP - 38371
EP - 38379
JO - ACS Omega
JF - ACS Omega
IS - 43
ER -