ANOVA simultaneous component analysis: A tutorial review

Carlo Bertinetto*, Jasper Engel, Jeroen Jansen

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

86 Citations (Scopus)

Abstract

When analyzing experimental chemical data, it is often necessary to incorporate the structure of the study design into the chemometric/statistical models to effectively address the research questions of interest. ANOVA-Simultaneous Component Analysis (ASCA) is one of the most prominent methods to include such information in the quantitative analysis of multivariate data, especially when the number of variables is large. This tutorial review intends to explain in a simple way how ASCA works, how it is operated and how to correctly interpret ASCA results, with approachable mathematical and visual descriptions. Two examples are given: the first, a simulated chemical reaction, serves to illustrate the ASCA steps and the second, from a real chemical ecology data set, the interpretation of results. An overview of methods closely related to ASCA is also provided, pointing out their differences and scope, to give a wide-ranging picture of the available options to build multivariate models that take experimental design into account.

Original languageEnglish
Article number100061
JournalAnalytica Chimica Acta: X
Volume6
DOIs
Publication statusPublished - Nov 2020

Keywords

  • Analysis of variance
  • Design of experiments
  • Interactions
  • Main effects
  • Multivariate models
  • Significance testing

Fingerprint

Dive into the research topics of 'ANOVA simultaneous component analysis: A tutorial review'. Together they form a unique fingerprint.

Cite this