Analyzing subcellular reorganization during early Arabidopsis embryogenesis using fluorescent markers

Che Yang Liao, Dolf Weijers*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingChapterAcademicpeer-review

1 Citation (Scopus)


Virtually all growth, developmental, physiological, and defense responses in plants are accompanied by reorganization of subcellular structures to enable altered cellular growth, differentiation or function. Visualizing cellular reorganization is therefore critical to understand plant biology at the cellular scale. Fluorescently labeled markers for organelles, or for cellular components are widely used in combination with confocal microscopy to visualize cellular reorganization. Early during plant embryogenesis, the precursors for all major tissues of the seedling are established, and in Arabidopsis, this entails a set of nearly invariant switches in cell division orientation and directional cell expansion. Given that these cellular reorganization events are genetically regulated and coupled to formative events in plant development, they offer a good model to understand the genetic control of cellular reorganization in plant development. Until recently, it has been challenging to visualize subcellular structures in the early Arabidopsis embryo for two reasons: embryos are deeply embedded in seed coat and fruit, and in addition, no dedicated fluorescent markers, expressed in the embryo, were available. We recently established both an imaging approach and a set of markers for the early Arabidopsis embryo. Here, we describe a detailed protocol to use these new tools in imaging cellular reorganization.

Original languageEnglish
Title of host publicationPlant Embryogenesis
Subtitle of host publicationMethods and Protocols
EditorsM. Bayer
Place of PublicationNew York
PublisherHumana Press
Number of pages13
ISBN (Electronic)9781071603420
ISBN (Print)9781071603413
Publication statusPublished - 24 Jan 2020

Publication series

NameMethods in Molecular Biology
ISSN (Print)1064-3745
ISSN (Electronic)1940-6029


  • Arabidopsis thaliana
  • Confocal microscopy
  • Embryogenesis
  • Fluorescent protein
  • Subcellular structure


Dive into the research topics of 'Analyzing subcellular reorganization during early Arabidopsis embryogenesis using fluorescent markers'. Together they form a unique fingerprint.

Cite this