TY - JOUR
T1 - Analysis of the duodenal microbiotas of weaned piglet fed with epidermal growth factor-expressed Saccharomyces cerevisiae
AU - Zhang, Zhongwei
AU - Cao, Lili
AU - Zhou, Yan
AU - Wang, Shujin
AU - Zhou, Lin
PY - 2016/7/28
Y1 - 2016/7/28
N2 - Background: The bacterial community of the small intestine is a key factor that has strong influence on the health of gastrointestinal tract (GIT) in mammals during and shortly after weaning. The aim of this study was to analyze the effects of the diets of supplemented with epidermal growth factor (EGF)-expressed Saccharomyces cerevisiae (S. cerevisiae) on the duodenal microbiotas of weaned piglets. Results: Revealed in this study, at day 7, 14 and 21, respectively, the compositional sequencing analysis of the 16S rRNA in the duodenum had no marked difference in microbial diversity from the phylum to species levels between the INVSc1(EV) and other recombinant strains encompassing INVSc1-EE(+), INVSc1-TE(-), and INVSc1-IE(+). Furthermore, the populations of potentially enterobacteria (e.g., Clostridium and Prevotella) and probiotic (e.g., Lactobacilli and Lactococcus) also remained unchanged among recombinant S. cerevisiae groups (P > 0.05). However, the compositional sequencing analysis of the 16S rRNA in the duodenum revealed significant difference in microbial diversity from phylum to species levels between the control group and recombinant S. cerevisiae groups. In terms of the control group (the lack of S. cerevisiae), these data confirmed that dietary exogenous S. cerevisiae had the feasibility to be used as a supplement for enhancing potentially probiotic (e.g., Lactobacilli and Lactococcus) (P < 0.01), and reducing potentially pathogenic bacteria (e.g., Clostridium and Prevotella) (P < 0.01). Conclusion: Herein, altered the microbiome effect was really S. cerevisiae, and then different forms of recombinant EGF, including T-EGF, EE-EGF and IE-EGF, did not appear to make a significant difference to the microbiome of weaned piglets.
AB - Background: The bacterial community of the small intestine is a key factor that has strong influence on the health of gastrointestinal tract (GIT) in mammals during and shortly after weaning. The aim of this study was to analyze the effects of the diets of supplemented with epidermal growth factor (EGF)-expressed Saccharomyces cerevisiae (S. cerevisiae) on the duodenal microbiotas of weaned piglets. Results: Revealed in this study, at day 7, 14 and 21, respectively, the compositional sequencing analysis of the 16S rRNA in the duodenum had no marked difference in microbial diversity from the phylum to species levels between the INVSc1(EV) and other recombinant strains encompassing INVSc1-EE(+), INVSc1-TE(-), and INVSc1-IE(+). Furthermore, the populations of potentially enterobacteria (e.g., Clostridium and Prevotella) and probiotic (e.g., Lactobacilli and Lactococcus) also remained unchanged among recombinant S. cerevisiae groups (P > 0.05). However, the compositional sequencing analysis of the 16S rRNA in the duodenum revealed significant difference in microbial diversity from phylum to species levels between the control group and recombinant S. cerevisiae groups. In terms of the control group (the lack of S. cerevisiae), these data confirmed that dietary exogenous S. cerevisiae had the feasibility to be used as a supplement for enhancing potentially probiotic (e.g., Lactobacilli and Lactococcus) (P < 0.01), and reducing potentially pathogenic bacteria (e.g., Clostridium and Prevotella) (P < 0.01). Conclusion: Herein, altered the microbiome effect was really S. cerevisiae, and then different forms of recombinant EGF, including T-EGF, EE-EGF and IE-EGF, did not appear to make a significant difference to the microbiome of weaned piglets.
KW - Bacterial community
KW - Epidermal growth factor
KW - Full-length 16S rRNA
KW - Saccharomyces cerevisiae
KW - Weaned piglet
U2 - 10.1186/s12866-016-0783-7
DO - 10.1186/s12866-016-0783-7
M3 - Article
C2 - 27464596
AN - SCOPUS:84979690534
SN - 1471-2180
VL - 16
JO - BMC Microbiology
JF - BMC Microbiology
IS - 1
M1 - 166
ER -