Abstract
Site-directed spin-labeling electron spin resonance (SDSL-ESR) is a promising tool for membrane protein structure determination. Here we propose a novel way to translate the local structural constraints gained by SDSL-ESR data into a low-resolution structure of a protein by simulating the restrictions of the local conformational spaces of the spin label attached at different protein sites along the primary structure of the membrane-embedded protein. We test the sensitivity of this approach for membrane-embedded M13 major coat protein decorated with a limited number of strategically placed spin labels employing high-throughput site-directed mutagenesis. We find a reasonably good agreement of the simulated and the experimental data taking a protein conformation close to the one determined by fluorescence resonance energy transfer analysis [P.V. Nazarov, R.B.M. Koehorst, W.L. Vos, V.V. Apanasovich, M.A. Hemminga, FRET study of membrane proteins: determination of the tilt and orientation of the N-terminal domain of M13 major coat protein, Biophys. J. 92 (2007) 1296¿1305]
Original language | English |
---|---|
Pages (from-to) | 245-248 |
Journal | Journal of Magnetic Resonance |
Volume | 197 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2009 |
Keywords
- major coat protein
- paramagnetic-resonance spectra
- biosystem complexity
- alpha-helix
- dynamics
- simulation
- fret