Analysis of Cassini/CIRS limb spectra of Titan acquired during the nominal mission II: Aerosol extinction profiles in the 600-1420cm-1 spectral range

Sandrine Vinatier*, Bruno Bézard, Remco de Kok, Carrie M. Anderson, Robert E. Samuelson, Conor A. Nixon, Andrei Mamoutkine, Ronald C. Carlson, Donald E. Jennings, Ever A. Guandique, Gordon L. Bjoraker, F. Michael Flasar, Virgil G. Kunde

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

35 Citations (Scopus)


We have analyzed the continuum emission of limb spectra acquired by the Cassini/CIRS infrared spectrometer in order to derive information on haze extinction in the 3-0.02mbar range (∼150-350km). We focused on the 600-1420cm-1 spectral range and studied nine different limb observations acquired during the Cassini nominal mission at 55°S, 20°S, 5°N, 30°N, 40°N, 45°N, 55°N, 70°N and 80°N. By means of an inversion algorithm solving the radiative transfer equation, we derived the vertical profiles of haze extinction coefficients from 17 spectral ranges of 20-cm-1 wide at each of the nine latitudes. At a given latitude, all extinction vertical profiles retrieved from various spectral intervals between 600 and 1120 cm-1 display similar vertical slopes implying similar spectral characteristics of the material at all altitudes. We calculated a mean vertical extinction profile for each latitude and derived the ratio of the haze scale height (Hhaze) to the pressure scale height (Hgas) as a function of altitude. We inferred Hhaze/Hgas values varying from 0.8 to 2.4. The aerosol scale height varies with altitude and also with latitude. Overall, the haze extinction does not show strong latitudinal variations but, at 1mbar, an increase by a factor of 1.5 is observed at the north pole compared to high southern latitudes. The vertical optical depths at 0.5 and 1.7mbar increase from 55°S to 5°N, remain constant between 5°N and 30°N and display little variation at higher latitudes, except the presence of a slight local maximum at 45°N. The spectral dependence of the haze vertical optical depth is uniform with latitude and displays three main spectral features centered at 630cm-1, 745cm-1 and 1390cm-1, the latter showing a wide tail extending down to ∼1000cm-1. From 600 to 750cm-1, the optical depth increases by a factor of 3 in contrast with the absorbance of laboratory tholins, which is generally constant. We derived the mass mixing ratio profiles of haze at the nine latitudes. Below the 0.4-mbar level all mass mixing ratio profiles increase with height. Above this pressure level, the profiles at 40°N, 45°N, 55°N, at the edge of the polar vortex, display a decrease-with-height whereas the other profiles increase. The global increase with height of the haze mass mixing ratio suggest a source at high altitudes and a sink at low altitudes. An enrichment of haze is observed at 0.1mbar around the equator, which could be due to a more efficient photochemistry because of the strongest insolation there or an accumulation of haze due to a balance between sedimentation and upward vertical drag.

Original languageEnglish
Pages (from-to)852-866
Number of pages15
Issue number2
Publication statusPublished - Dec 2010
Externally publishedYes


  • Abundances, Atmospheres
  • Infrared observations
  • Titan


Dive into the research topics of 'Analysis of Cassini/CIRS limb spectra of Titan acquired during the nominal mission II: Aerosol extinction profiles in the 600-1420cm-1 spectral range'. Together they form a unique fingerprint.

Cite this