An influential meal: host plant dependent transcriptional variation in the beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae)

Thijmen Breeschoten*, Vera I.D. Ros, M.E. Schranz, Sabrina Simon

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

BackgroundTo understand the genetic mechanisms of insect herbivory, the transcriptional response of insects feeding on different host plant species has to be studied. Here, we generated gene expression data of the generalist herbivore Spodoptera exigua (Hübner) feeding on three selected host plant species and a control (artificial diet). The host plant species used in this study –cabbage (Brassica oleracea), maize (Zea mays) and tobacco (Nicotiana tabacum)- are members of different plant families that each employ specific defence mechanisms and toxins.ResultsSpodoptera exigua larvae had a higher growth rate, indicator for herbivore success, when feeding on Z. mays compared to larvae feeding on B. oleracea or N. tabacum. Larvae feeding on the different host plant species showed divergent transcriptional responses. We identified shared and unique gene expression patterns dependent of the host plant species the larvae fed on. Unique gene expression patterns, containing uniquely upregulated transcripts including specific detoxification genes, were found for larvae feeding on either B. oleracea or N. tabacum. No diet-specific gene cluster was identified for larvae feeding on the host for which larvae showed optimal herbivore success, Z. mays, or artificial diet. In contrast, for larvae feeding on hosts for which they showed low herbivore success, specific diet-dependent gene clusters were identified. Functional annotation of these clusters indicates that S. exigua larvae deploy particular host plant-specific genes for digestion and detoxification.ConclusionsThe lack of a host plant-specific gene activity for larvae feeding on Z. mays and the artificial diet suggest a general and non-specific gene activity for host plants with optimal herbivore success. Whereas the finding of specific gene clusters containing particular digestion and detoxifying genes expressed in larvae feeding on B. oleracea and N. tabacum, with low herbivore success, imply a host plant-specific gene activity for larvae feeding on host plants with suboptimal herbivore success. This observation leads to the conclusion that a polyphagous herbivore is able to feed on a large variation of host plants due to the flexibility and diversity of genes involved in digestion and detoxification that are deployed in response to particular host plant species.
Original languageEnglish
Article number845
JournalBMC Genomics
Volume20
Issue number1
DOIs
Publication statusPublished - 13 Nov 2019

Fingerprint

Spodoptera
Lepidoptera
Beta vulgaris
Herbivory
Larva
Meals
Zea mays
Tobacco
Plant Genes
Diet
Multigene Family
Digestion
Brassica
Gene Expression
Genes
Insects
Defense Mechanisms

Cite this

@article{b36be594600043109fcabadb66292cbe,
title = "An influential meal: host plant dependent transcriptional variation in the beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae)",
abstract = "BackgroundTo understand the genetic mechanisms of insect herbivory, the transcriptional response of insects feeding on different host plant species has to be studied. Here, we generated gene expression data of the generalist herbivore Spodoptera exigua (H{\"u}bner) feeding on three selected host plant species and a control (artificial diet). The host plant species used in this study –cabbage (Brassica oleracea), maize (Zea mays) and tobacco (Nicotiana tabacum)- are members of different plant families that each employ specific defence mechanisms and toxins.ResultsSpodoptera exigua larvae had a higher growth rate, indicator for herbivore success, when feeding on Z. mays compared to larvae feeding on B. oleracea or N. tabacum. Larvae feeding on the different host plant species showed divergent transcriptional responses. We identified shared and unique gene expression patterns dependent of the host plant species the larvae fed on. Unique gene expression patterns, containing uniquely upregulated transcripts including specific detoxification genes, were found for larvae feeding on either B. oleracea or N. tabacum. No diet-specific gene cluster was identified for larvae feeding on the host for which larvae showed optimal herbivore success, Z. mays, or artificial diet. In contrast, for larvae feeding on hosts for which they showed low herbivore success, specific diet-dependent gene clusters were identified. Functional annotation of these clusters indicates that S. exigua larvae deploy particular host plant-specific genes for digestion and detoxification.ConclusionsThe lack of a host plant-specific gene activity for larvae feeding on Z. mays and the artificial diet suggest a general and non-specific gene activity for host plants with optimal herbivore success. Whereas the finding of specific gene clusters containing particular digestion and detoxifying genes expressed in larvae feeding on B. oleracea and N. tabacum, with low herbivore success, imply a host plant-specific gene activity for larvae feeding on host plants with suboptimal herbivore success. This observation leads to the conclusion that a polyphagous herbivore is able to feed on a large variation of host plants due to the flexibility and diversity of genes involved in digestion and detoxification that are deployed in response to particular host plant species.",
author = "Thijmen Breeschoten and Ros, {Vera I.D.} and M.E. Schranz and Sabrina Simon",
year = "2019",
month = "11",
day = "13",
doi = "10.1186/s12864-019-6081-7",
language = "English",
volume = "20",
journal = "BMC Genomics",
issn = "1471-2164",
publisher = "Springer Verlag",
number = "1",

}

TY - JOUR

T1 - An influential meal: host plant dependent transcriptional variation in the beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae)

AU - Breeschoten, Thijmen

AU - Ros, Vera I.D.

AU - Schranz, M.E.

AU - Simon, Sabrina

PY - 2019/11/13

Y1 - 2019/11/13

N2 - BackgroundTo understand the genetic mechanisms of insect herbivory, the transcriptional response of insects feeding on different host plant species has to be studied. Here, we generated gene expression data of the generalist herbivore Spodoptera exigua (Hübner) feeding on three selected host plant species and a control (artificial diet). The host plant species used in this study –cabbage (Brassica oleracea), maize (Zea mays) and tobacco (Nicotiana tabacum)- are members of different plant families that each employ specific defence mechanisms and toxins.ResultsSpodoptera exigua larvae had a higher growth rate, indicator for herbivore success, when feeding on Z. mays compared to larvae feeding on B. oleracea or N. tabacum. Larvae feeding on the different host plant species showed divergent transcriptional responses. We identified shared and unique gene expression patterns dependent of the host plant species the larvae fed on. Unique gene expression patterns, containing uniquely upregulated transcripts including specific detoxification genes, were found for larvae feeding on either B. oleracea or N. tabacum. No diet-specific gene cluster was identified for larvae feeding on the host for which larvae showed optimal herbivore success, Z. mays, or artificial diet. In contrast, for larvae feeding on hosts for which they showed low herbivore success, specific diet-dependent gene clusters were identified. Functional annotation of these clusters indicates that S. exigua larvae deploy particular host plant-specific genes for digestion and detoxification.ConclusionsThe lack of a host plant-specific gene activity for larvae feeding on Z. mays and the artificial diet suggest a general and non-specific gene activity for host plants with optimal herbivore success. Whereas the finding of specific gene clusters containing particular digestion and detoxifying genes expressed in larvae feeding on B. oleracea and N. tabacum, with low herbivore success, imply a host plant-specific gene activity for larvae feeding on host plants with suboptimal herbivore success. This observation leads to the conclusion that a polyphagous herbivore is able to feed on a large variation of host plants due to the flexibility and diversity of genes involved in digestion and detoxification that are deployed in response to particular host plant species.

AB - BackgroundTo understand the genetic mechanisms of insect herbivory, the transcriptional response of insects feeding on different host plant species has to be studied. Here, we generated gene expression data of the generalist herbivore Spodoptera exigua (Hübner) feeding on three selected host plant species and a control (artificial diet). The host plant species used in this study –cabbage (Brassica oleracea), maize (Zea mays) and tobacco (Nicotiana tabacum)- are members of different plant families that each employ specific defence mechanisms and toxins.ResultsSpodoptera exigua larvae had a higher growth rate, indicator for herbivore success, when feeding on Z. mays compared to larvae feeding on B. oleracea or N. tabacum. Larvae feeding on the different host plant species showed divergent transcriptional responses. We identified shared and unique gene expression patterns dependent of the host plant species the larvae fed on. Unique gene expression patterns, containing uniquely upregulated transcripts including specific detoxification genes, were found for larvae feeding on either B. oleracea or N. tabacum. No diet-specific gene cluster was identified for larvae feeding on the host for which larvae showed optimal herbivore success, Z. mays, or artificial diet. In contrast, for larvae feeding on hosts for which they showed low herbivore success, specific diet-dependent gene clusters were identified. Functional annotation of these clusters indicates that S. exigua larvae deploy particular host plant-specific genes for digestion and detoxification.ConclusionsThe lack of a host plant-specific gene activity for larvae feeding on Z. mays and the artificial diet suggest a general and non-specific gene activity for host plants with optimal herbivore success. Whereas the finding of specific gene clusters containing particular digestion and detoxifying genes expressed in larvae feeding on B. oleracea and N. tabacum, with low herbivore success, imply a host plant-specific gene activity for larvae feeding on host plants with suboptimal herbivore success. This observation leads to the conclusion that a polyphagous herbivore is able to feed on a large variation of host plants due to the flexibility and diversity of genes involved in digestion and detoxification that are deployed in response to particular host plant species.

U2 - 10.1186/s12864-019-6081-7

DO - 10.1186/s12864-019-6081-7

M3 - Article

VL - 20

JO - BMC Genomics

JF - BMC Genomics

SN - 1471-2164

IS - 1

M1 - 845

ER -