TY - JOUR
T1 - An automated system for the recognition of various specific rat behaviours
AU - van Dam, E.A.
AU - van der Harst, J.E.
AU - ter Braak, C.J.F.
AU - Tegelenbosch, R.A.J.
AU - Spruijt, B.M.
AU - Noldus, L.P.J.J.
PY - 2013
Y1 - 2013
N2 - The automated measurement of rodent behaviour is crucial to advance research in neuroscience and pharmacology. Rats and mice are used as models for human diseases; their behaviour is studied to discover and develop new drugs for psychiatric and neurological disorders and to establish the effect of genetic variation on behavioural changes. Such behaviour is primarily labelled by humans. Manual annotation is labour intensive, error-prone and subject to individual interpretation.
We present a system for automated behaviour recognition (ABR) that recognises the rat behaviours ‘drink’, ‘eat’, ‘sniff’, ‘groom’, ‘jump’, ‘rear unsupported’, ‘rear wall’, ‘rest’, ‘twitch’ and ‘walk’. The ABR system needs no on-site training; the only inputs needed are the sizes of the cage and the animal. This is a major advantage over other systems that need to be trained with hand-labelled data before they can be used in a new experimental setup. Furthermore, ABR uses an overhead camera view, which is more practical in lab situations and facilitates high-throughput testing more easily than a side-view setup.
ABR has been validated by comparison with manual behavioural scoring by an expert. For this, animals were treated with two types of psychopharmaca: a stimulant drug (Amphetamine) and a sedative drug (Diazepam). The effects of drug treatment on certain behavioural categories were measured and compared for both analysis methods. Statistical analysis showed that ABR found similar behavioural effects as the human observer. We conclude that our ABR system represents a significant step forward in the automated observation of rodent behaviour.
AB - The automated measurement of rodent behaviour is crucial to advance research in neuroscience and pharmacology. Rats and mice are used as models for human diseases; their behaviour is studied to discover and develop new drugs for psychiatric and neurological disorders and to establish the effect of genetic variation on behavioural changes. Such behaviour is primarily labelled by humans. Manual annotation is labour intensive, error-prone and subject to individual interpretation.
We present a system for automated behaviour recognition (ABR) that recognises the rat behaviours ‘drink’, ‘eat’, ‘sniff’, ‘groom’, ‘jump’, ‘rear unsupported’, ‘rear wall’, ‘rest’, ‘twitch’ and ‘walk’. The ABR system needs no on-site training; the only inputs needed are the sizes of the cage and the animal. This is a major advantage over other systems that need to be trained with hand-labelled data before they can be used in a new experimental setup. Furthermore, ABR uses an overhead camera view, which is more practical in lab situations and facilitates high-throughput testing more easily than a side-view setup.
ABR has been validated by comparison with manual behavioural scoring by an expert. For this, animals were treated with two types of psychopharmaca: a stimulant drug (Amphetamine) and a sedative drug (Diazepam). The effects of drug treatment on certain behavioural categories were measured and compared for both analysis methods. Statistical analysis showed that ABR found similar behavioural effects as the human observer. We conclude that our ABR system represents a significant step forward in the automated observation of rodent behaviour.
KW - induced circling behavior
KW - anticipatory behavior
KW - free exploration
KW - sensitization
KW - amphetamine
KW - mice
KW - environment
KW - expression
U2 - 10.1016/j.jneumeth.2013.05.012
DO - 10.1016/j.jneumeth.2013.05.012
M3 - Article
SN - 0165-0270
VL - 218
SP - 214
EP - 224
JO - Journal of Neuroscience Methods
JF - Journal of Neuroscience Methods
IS - 2
ER -