TY - BOOK
T1 - Algal technologies for wastewater treatment and resource recovery
AU - Muñoz, Raul
AU - Temmink, Hardy
AU - Verschoor, Anthony M.
AU - van der Steen, Peter
PY - 2019/7
Y1 - 2019/7
N2 - Over 80% of globally produced wastewater receives little or no treatment before it is disposed into the environment. Therefore, it is urgent to develop new wastewater treatment technologies that are sustainable in the broad sense of the word, i.e. not only produce high quality effluents, but also minimise energy expenses, recover energy and nutrients, and apply technology that is appropriate in relation to the availability of skilled personnel. This book compiles the main outcomes of recent efforts to improve the design of waste stabilisation ponds, and confirms the superior performance of high rate algal ponds as a result of process intensification. Anaerobic digestion devoted to biogas production continues to be the preferred strategy for the energy valorisation of the algal biomass, co-digestion with multiple high C/N ratio substrates gathering significant attention over the past years. The potential of algal biomass as a biosorbent for heavy metal removal (Cu, Ni, F) maintains its share in the research field of water bioremediation, while research on nutrient removal has focused on providing new insights on the mechanism of nitrogen and phosphorus removal from wastewater in algal-bacterial systems. Finally, it is worth noticing that breakthroughs in complementary fields of research such as nanotechnology or lighting technology are gradually being implemented in algal biotechnology, with new products such as nanoparticles for water disinfection or photobioreactors illuminated by low intensity LED panels.
AB - Over 80% of globally produced wastewater receives little or no treatment before it is disposed into the environment. Therefore, it is urgent to develop new wastewater treatment technologies that are sustainable in the broad sense of the word, i.e. not only produce high quality effluents, but also minimise energy expenses, recover energy and nutrients, and apply technology that is appropriate in relation to the availability of skilled personnel. This book compiles the main outcomes of recent efforts to improve the design of waste stabilisation ponds, and confirms the superior performance of high rate algal ponds as a result of process intensification. Anaerobic digestion devoted to biogas production continues to be the preferred strategy for the energy valorisation of the algal biomass, co-digestion with multiple high C/N ratio substrates gathering significant attention over the past years. The potential of algal biomass as a biosorbent for heavy metal removal (Cu, Ni, F) maintains its share in the research field of water bioremediation, while research on nutrient removal has focused on providing new insights on the mechanism of nitrogen and phosphorus removal from wastewater in algal-bacterial systems. Finally, it is worth noticing that breakthroughs in complementary fields of research such as nanotechnology or lighting technology are gradually being implemented in algal biotechnology, with new products such as nanoparticles for water disinfection or photobioreactors illuminated by low intensity LED panels.
U2 - 10.2166/9781789060935
DO - 10.2166/9781789060935
M3 - Book editing
AN - SCOPUS:85214904847
SN - 9781789060928
BT - Algal technologies for wastewater treatment and resource recovery
PB - IWA Publishing
ER -