Aerosols in the convective boundary layer: Shortwave radiation effects on the coupled land-atmosphere system

E. Wilde Barbaro, J. Vilà-Guerau de Arellano, H.G. Ouwersloot, J.S. Schroter, D.P. Donovan, M.C. Krol

Research output: Contribution to journalArticleAcademicpeer-review

22 Citations (Scopus)

Abstract

By combining observations and numerical simulations, we investigated the responses of the surface energy budget and the convective boundary layer (CBL) dynamics to the presence of aerosols. A detailed data set containing (thermo)dynamic observations at CESAR (Cabauw Experimental Site for Atmospheric Research) and aerosol information from the European Integrated Project on Aerosol, Cloud, Climate, and Air Quality Interactions was employed to design numerical experiments reproducing two typical clear-sky days, each characterized by contrasting thermodynamic initial profiles: (i) residual layer above a strong surface inversion and (ii) well-mixed CBL connected to the free troposphere by a capping inversion, without the residual layer in between. A large-eddy simulation (LES) model and a mixed-layer (MXL) model, coupled to a broadband radiative transfer code and a land surface model, were used to study the impacts of aerosols on shortwave radiation. Both the LES model and the MXL model results reproduced satisfactorily the observations for both days. A sensitivity analysis on a wide range of aerosol properties was conducted. Our results showed that higher loads of aerosols decreased irradiance imposing an energy restriction at the surface, delaying the morning onset of the CBL and advancing its afternoon collapse. Moderately to strongly absorbing aerosols increased the heating rate contributing positively to increase the afternoon CBL height and potential temperature and to decrease Bowen ratio. In contrast, scattering aerosols were associated with smaller heating rates and cooler and shallower CBLs. Our findings advocate the need for accounting for the aerosol influence in analyzing surface and CBL dynamics.
Original languageEnglish
Pages (from-to)5845-5863
JournalJournal of Geophysical Research: Atmospheres
Volume119
Issue number10
DOIs
Publication statusPublished - 2014

Keywords

  • large-eddy-simulation
  • quality interactions eucaari
  • european integrated project
  • optical-properties
  • ammonium-nitrate
  • energy-balance
  • climate system
  • global scales
  • cloud climate
  • model

Fingerprint Dive into the research topics of 'Aerosols in the convective boundary layer: Shortwave radiation effects on the coupled land-atmosphere system'. Together they form a unique fingerprint.

  • Cite this