(A)cross-breed Genomic Prediction

Research output: Contribution to conferenceConference paperAcademic

Abstract

Genomic prediction holds the promise to use information of other populations to improve prediction accuracy. Thus far, empirical evaluations showed limited benefit of multi-breed compared to single reed genomic prediction. We compared prediction accuracy of different models based on two losely related and one unrelated line of layer chickens. Multi-breed genomic prediction may be successful when lines are closely related, and when the number of training animals of the additional line is large compared to the line itself. Multi-breed genomic prediction requires models that are lexible enough to use beneficial and ignore detrimental sources of information in the training data. Combining linear and non-linear models may lead to small increases in accuracy of multibreed genomic prediction. Multitrait models, modelling a separate trait for each breed, appear especially beneficial when elationships between breeds are very low, or when the genetic correlation between breeds is negative.
Original languageEnglish
Pages1-6
Publication statusPublished - 2014
Event10th WCGALP, Vancouver, Canada -
Duration: 17 Aug 201422 Aug 2014

Conference

Conference10th WCGALP, Vancouver, Canada
Period17/08/1422/08/14

Fingerprint

Dive into the research topics of '(A)cross-breed Genomic Prediction'. Together they form a unique fingerprint.

Cite this