TY - JOUR
T1 - Acceleration of the Fe(III)EDTA(-) reduction rate in BioDeNO(x) reactors by dosing electron mediating compounds
AU - van der Maas, P.M.F.
AU - van den Brink, P.
AU - Klapwijk, A.
AU - Lens, P.N.L.
N1 - ISI:000265159300016
PY - 2009
Y1 - 2009
N2 - BioDeNO(x), a novel technique to remove NOx from industrial flue gases, is based on absorption of gaseous nitric oxide into an aqueous Fe(II)EDTA(2-) solution, followed by the biological reduction of Fe(II)EDTA(2-) complexed NO to N-2. Besides NO reduction, high rate biological Fe(III)EDTA(-) reduction is a crucial factor for a succesful application of the BioDeNO(x) technology, as it determines the Fe(II)EDTA(2-) concentration in the scrubber liquor and thus the efficiency of NO removal from the gas phase. This paper investigates the mechanism and kinetics of biological Fe(III)EDTA(-) reduction by unadapted anaerobic methanogenic sludge and BioDeNO(x) reactor mixed liquor. The influence of different electron donors, electron mediating compounds and CaSO3 on the Fe(III)EDTA(-) reduction rate was determined in batch experiments (21 mM Fe(III)EDTA(-), 55 degrees C, pH 7.2 +/- 0.2). The Fe(III)EDTA(-) reduction rate depended on the type of electron donor, the highest rate (13.9 mM h(-1)) was observed with glucose, followed by ethanol, acetate and hydrogen. Fe(III)EDTA(-) reduction occurred at a relatively slow (4.1 mM h(-1)) rate with methanol as the electron donor. Small amounts (0.5 mM) of sulfide, cysteine or elemental sulfur accelerated the Fe(III)EDTA(-) reduction. The amount of iron reduced significantly exceeded the amount that can be formed by the chemical reaction of sulfide with Fe(III)EDTA(-), suggesting that the Fe(III)EDTA(-) reduction was accelerated via an auto-catalytic process with an unidentified electron mediating compound, presumably polysulfides. formed out of the sulfur additives, Using ethanol as electron donor, the specific Fe(III)EDTA(-) reduction rate was linearly related to the amount of sulfide supplied. CaSO3 (0.5-100 mM) inhibited Fe(III)EDTA(-) reduction, probably because SO32- scavenged the electron mediating compound. 3
AB - BioDeNO(x), a novel technique to remove NOx from industrial flue gases, is based on absorption of gaseous nitric oxide into an aqueous Fe(II)EDTA(2-) solution, followed by the biological reduction of Fe(II)EDTA(2-) complexed NO to N-2. Besides NO reduction, high rate biological Fe(III)EDTA(-) reduction is a crucial factor for a succesful application of the BioDeNO(x) technology, as it determines the Fe(II)EDTA(2-) concentration in the scrubber liquor and thus the efficiency of NO removal from the gas phase. This paper investigates the mechanism and kinetics of biological Fe(III)EDTA(-) reduction by unadapted anaerobic methanogenic sludge and BioDeNO(x) reactor mixed liquor. The influence of different electron donors, electron mediating compounds and CaSO3 on the Fe(III)EDTA(-) reduction rate was determined in batch experiments (21 mM Fe(III)EDTA(-), 55 degrees C, pH 7.2 +/- 0.2). The Fe(III)EDTA(-) reduction rate depended on the type of electron donor, the highest rate (13.9 mM h(-1)) was observed with glucose, followed by ethanol, acetate and hydrogen. Fe(III)EDTA(-) reduction occurred at a relatively slow (4.1 mM h(-1)) rate with methanol as the electron donor. Small amounts (0.5 mM) of sulfide, cysteine or elemental sulfur accelerated the Fe(III)EDTA(-) reduction. The amount of iron reduced significantly exceeded the amount that can be formed by the chemical reaction of sulfide with Fe(III)EDTA(-), suggesting that the Fe(III)EDTA(-) reduction was accelerated via an auto-catalytic process with an unidentified electron mediating compound, presumably polysulfides. formed out of the sulfur additives, Using ethanol as electron donor, the specific Fe(III)EDTA(-) reduction rate was linearly related to the amount of sulfide supplied. CaSO3 (0.5-100 mM) inhibited Fe(III)EDTA(-) reduction, probably because SO32- scavenged the electron mediating compound. 3
KW - methanogenic bacteria
KW - hydrogen-sulfide
KW - reducing bacteria
KW - nitrogen-oxides
KW - chelated iron
KW - nitric-oxide
KW - fatty-acids
KW - flue-gas
KW - edta
KW - absorption
U2 - 10.1016/j.chemosphere.2008.04.043
DO - 10.1016/j.chemosphere.2008.04.043
M3 - Article
SN - 0045-6535
VL - 75
SP - 243
EP - 249
JO - Chemosphere
JF - Chemosphere
IS - 2
ER -