Absence of complementary sex determination in the parasitoid wasp genus asobara (hymenoptera: braconidae)

W.J. Ma, B. Kuijper, J.G. de Boer, L. van de Zande, L.W. Beukeboom, B. Wertheim, B.A. Pannebakker

Research output: Contribution to journalArticleAcademicpeer-review

16 Citations (Scopus)


An attractive way to improve our understanding of sex determination evolution is to study the underlying mechanisms in closely related species and in a phylogenetic perspective. Hymenopterans are well suited owing to the diverse sex determination mechanisms, including different types of Complementary Sex Determination (CSD) and maternal control sex determination. We investigated different types of CSD in four species within the braconid wasp genus Asobara that exhibit diverse life-history traits. Nine to thirteen generations of inbreeding were monitored for diploid male production, brood size, offspring sex ratio, and pupal mortality as indicators for CSD. In addition, simulation models were developed to compare these observations to predicted patterns for multilocus CSD with up to ten loci. The inbreeding regime did not result in diploid male production, decreased brood sizes, substantially increased offspring sex ratios nor in increased pupal mortality. The simulations further allowed us to reject CSD with up to ten loci, which is a strong refutation of the multilocus CSD model. We discuss how the absence of CSD can be reconciled with the variation in life-history traits among Asobara species, and the ramifications for the phylogenetic distribution of sex determination mechanisms in the Hymenoptera
Original languageEnglish
Article numbere60459
Number of pages9
JournalPLoS ONE
Issue number4
Publication statusPublished - 2013


  • nasonia-vitripennis hymenoptera
  • tabida nees braconidae
  • drosophila-melanogaster
  • cotesia-vestalis
  • determining mechanisms
  • inbreeding depression
  • determination pathway
  • diploid males
  • populations
  • models

Fingerprint Dive into the research topics of 'Absence of complementary sex determination in the parasitoid wasp genus asobara (hymenoptera: braconidae)'. Together they form a unique fingerprint.

Cite this