A statistical framework for the analysis of long image time series

K.M. De Beurs, G.M. Henebry*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

193 Citations (Scopus)

Abstract

Coarse spatial resolution satellites are capable of observing large swaths of the planetary surface in each overpass resulting in image time series with high temporal resolution. Many change-detection strategies commonly used in remote sensing studies were developed in an era of image scarcity and thus focus on comparing just a few scenes. However, change analysis methods applicable to images with sparse temporal sampling are not necessarily efficient and effective when applied to long image time series. We present a statistical framework that gathers together: (1) robust methods for multiple comparisons; (2) seasonally corrected Mann-Kendall trend tests; (3) a testing sequence for quadratic models of land surface phenology. This framework can be applied to long image time series to partition sources of variation and to assess the significance of detected changes. Using a standard image time series, the Pathfinder AVHRR Land (PAL) NDVI data, we apply the framework to address the question of whether the institutional changes accompanying the collapse of the Soviet Union resulted in significant changes in land surface phenologies across the ecoregions of Kazakhstan.

Original languageEnglish
Pages (from-to)1551-1573
Number of pages23
JournalInternational Journal of Remote Sensing
Volume26
Issue number8
DOIs
Publication statusPublished - 22 Feb 2007
Externally publishedYes

Fingerprint

Dive into the research topics of 'A statistical framework for the analysis of long image time series'. Together they form a unique fingerprint.

Cite this