A simulation study on the interactive effects of radiation and plant density on growth of cut chrysanthemum

J.H. Lee, E. Heuvelink, H. Challa

Research output: Contribution to journalArticleAcademicpeer-review

7 Citations (Scopus)

Abstract

In the present study, we used a photosynthesis-driven crop growth model to determine acceptable plant densities for cut chrysanthemum throughout the year at different intensities of supplementary light. Dry matter partitioning between leaves, stems, and flowers was simulated as a function of crop developmental stage. Leaf area index was simulated as leaf dry mass multiplied by specific leaf area, the latter being a function of season. Climatic data (hourly global radiation, greenhouse temperature, and CO2 concentration) and initial organ dry mass were model inputs. Assimilation lights were switched on and off based on time and ambient global radiation intensity. Simulated plant fresh mass with supplementary light (49 µmol m-2 s-1) for 52 cultivations (weekly plantings, reference plant densities, and length of the long and short day period) was used as reference plant fresh mass. For four other supplementary light intensities (31, 67, 85, and 104 µmol m-2 s-1), dry matter production was simulated with the reference plant density and length of the long and short day period for each planting week and plant fresh mass was calculated. The acceptable plant density was then calculated as the ratio between plant fresh mass and reference plant fresh mass multiplied by the reference density. Under low natural light intensities, plant density could be increased substantially (>30%) at increased supplementary light intensities, while maintaining the desired plant mass. Simulated light use efficiency (g additional dry mass ¿ MJ-1 additional supplementary light) was higher in winter (4.7) than in summer (3.5), whereas it hardly differed between the supplementary light intensities. This type of simulations can be used to support decisions on the acceptable level of plant density at different intensities of supplementary lighting or lighting strategies and on optimum supplementary light intensities.
Original languageEnglish
Pages (from-to)151-157
JournalActa Horticulturae
Volume593
DOIs
Publication statusPublished - 2002

Fingerprint

Chrysanthemum
plant density
light intensity
supplementary lighting
planting
crop models
dry matter partitioning
growth models
leaf area index
dry matter accumulation
lighting
leaves
assimilation (physiology)
solar radiation
leaf area
developmental stages
photosynthesis
greenhouses
flowers
stems

Cite this

@article{38b34f28ec8e4b11884363bba58a343d,
title = "A simulation study on the interactive effects of radiation and plant density on growth of cut chrysanthemum",
abstract = "In the present study, we used a photosynthesis-driven crop growth model to determine acceptable plant densities for cut chrysanthemum throughout the year at different intensities of supplementary light. Dry matter partitioning between leaves, stems, and flowers was simulated as a function of crop developmental stage. Leaf area index was simulated as leaf dry mass multiplied by specific leaf area, the latter being a function of season. Climatic data (hourly global radiation, greenhouse temperature, and CO2 concentration) and initial organ dry mass were model inputs. Assimilation lights were switched on and off based on time and ambient global radiation intensity. Simulated plant fresh mass with supplementary light (49 µmol m-2 s-1) for 52 cultivations (weekly plantings, reference plant densities, and length of the long and short day period) was used as reference plant fresh mass. For four other supplementary light intensities (31, 67, 85, and 104 µmol m-2 s-1), dry matter production was simulated with the reference plant density and length of the long and short day period for each planting week and plant fresh mass was calculated. The acceptable plant density was then calculated as the ratio between plant fresh mass and reference plant fresh mass multiplied by the reference density. Under low natural light intensities, plant density could be increased substantially (>30{\%}) at increased supplementary light intensities, while maintaining the desired plant mass. Simulated light use efficiency (g additional dry mass ¿ MJ-1 additional supplementary light) was higher in winter (4.7) than in summer (3.5), whereas it hardly differed between the supplementary light intensities. This type of simulations can be used to support decisions on the acceptable level of plant density at different intensities of supplementary lighting or lighting strategies and on optimum supplementary light intensities.",
author = "J.H. Lee and E. Heuvelink and H. Challa",
year = "2002",
doi = "10.17660/ActaHortic.2002.593.19",
language = "English",
volume = "593",
pages = "151--157",
journal = "Acta Horticulturae",
issn = "0567-7572",
publisher = "International Society for Horticultural Science",

}

A simulation study on the interactive effects of radiation and plant density on growth of cut chrysanthemum. / Lee, J.H.; Heuvelink, E.; Challa, H.

In: Acta Horticulturae, Vol. 593, 2002, p. 151-157.

Research output: Contribution to journalArticleAcademicpeer-review

TY - JOUR

T1 - A simulation study on the interactive effects of radiation and plant density on growth of cut chrysanthemum

AU - Lee, J.H.

AU - Heuvelink, E.

AU - Challa, H.

PY - 2002

Y1 - 2002

N2 - In the present study, we used a photosynthesis-driven crop growth model to determine acceptable plant densities for cut chrysanthemum throughout the year at different intensities of supplementary light. Dry matter partitioning between leaves, stems, and flowers was simulated as a function of crop developmental stage. Leaf area index was simulated as leaf dry mass multiplied by specific leaf area, the latter being a function of season. Climatic data (hourly global radiation, greenhouse temperature, and CO2 concentration) and initial organ dry mass were model inputs. Assimilation lights were switched on and off based on time and ambient global radiation intensity. Simulated plant fresh mass with supplementary light (49 µmol m-2 s-1) for 52 cultivations (weekly plantings, reference plant densities, and length of the long and short day period) was used as reference plant fresh mass. For four other supplementary light intensities (31, 67, 85, and 104 µmol m-2 s-1), dry matter production was simulated with the reference plant density and length of the long and short day period for each planting week and plant fresh mass was calculated. The acceptable plant density was then calculated as the ratio between plant fresh mass and reference plant fresh mass multiplied by the reference density. Under low natural light intensities, plant density could be increased substantially (>30%) at increased supplementary light intensities, while maintaining the desired plant mass. Simulated light use efficiency (g additional dry mass ¿ MJ-1 additional supplementary light) was higher in winter (4.7) than in summer (3.5), whereas it hardly differed between the supplementary light intensities. This type of simulations can be used to support decisions on the acceptable level of plant density at different intensities of supplementary lighting or lighting strategies and on optimum supplementary light intensities.

AB - In the present study, we used a photosynthesis-driven crop growth model to determine acceptable plant densities for cut chrysanthemum throughout the year at different intensities of supplementary light. Dry matter partitioning between leaves, stems, and flowers was simulated as a function of crop developmental stage. Leaf area index was simulated as leaf dry mass multiplied by specific leaf area, the latter being a function of season. Climatic data (hourly global radiation, greenhouse temperature, and CO2 concentration) and initial organ dry mass were model inputs. Assimilation lights were switched on and off based on time and ambient global radiation intensity. Simulated plant fresh mass with supplementary light (49 µmol m-2 s-1) for 52 cultivations (weekly plantings, reference plant densities, and length of the long and short day period) was used as reference plant fresh mass. For four other supplementary light intensities (31, 67, 85, and 104 µmol m-2 s-1), dry matter production was simulated with the reference plant density and length of the long and short day period for each planting week and plant fresh mass was calculated. The acceptable plant density was then calculated as the ratio between plant fresh mass and reference plant fresh mass multiplied by the reference density. Under low natural light intensities, plant density could be increased substantially (>30%) at increased supplementary light intensities, while maintaining the desired plant mass. Simulated light use efficiency (g additional dry mass ¿ MJ-1 additional supplementary light) was higher in winter (4.7) than in summer (3.5), whereas it hardly differed between the supplementary light intensities. This type of simulations can be used to support decisions on the acceptable level of plant density at different intensities of supplementary lighting or lighting strategies and on optimum supplementary light intensities.

U2 - 10.17660/ActaHortic.2002.593.19

DO - 10.17660/ActaHortic.2002.593.19

M3 - Article

VL - 593

SP - 151

EP - 157

JO - Acta Horticulturae

JF - Acta Horticulturae

SN - 0567-7572

ER -