A scuticociliate causes mass mortality of Diadema antillarum in the Caribbean Sea

Ian Hewson*, Isabella T. Ritchie, James S. Evans, Ashley Altera, Donald Behringer, Erin Bowman, Marilyn Brandt, Kayla A. Budd, Ruleo A. Camacho, Tomas O. Cornwell, Peter D. Countway, Aldo Croquer, Gabriel A. Delgado, Christopher DeRito, Elizabeth Duermit-Moreau, Ruth Francis-Floyd, Samuel Gittens, Leslie Henderson, Alwin Hylkema, Christina A. KelloggYasunari Kiryu, Kimani A. Kitson-Walters, Patricia Kramer, Judith C. Lang, Harilaos Lessios, Lauren Liddy, David Marancik, Stephen Nimrod, Joshua T. Patterson, Marit Pistor, Isabel C. Romero, Rita Sellares-Blasco, Moriah L.B. Sevier, William C. Sharp, Matthew Souza, Andreina Valdez-Trinidad, Marijn van der Laan, Brayan Vilanova-Cuevas, Maria Villalpando, Sarah D. Von Hoene, Matthew Warham, Tom Wijers, Stacey M. Williams, Thierry M. Work, Roy P. Yanong, Someira Zambrano, Alizee Zimmermann, Mya Breitbart

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

12 Citations (Scopus)

Abstract

Echinoderm mass mortality events shape marine ecosystems by altering the dynamics among major benthic groups. The sea urchin Diadema antillarum, virtually extirpated in the Caribbean in the early 1980s by an unknown cause, recently experienced another mass mortality beginning in January 2022. We investigated the cause of this mass mortality event through combined molecular biological and veterinary pathologic approaches comparing grossly normal and abnormal animals collected from 23 sites, representing locations that were either affected or unaffected at the time of sampling. Here, we report that a scuticociliate most similar to Philaster apodigitiformis was consistently associated with abnormal urchins at affected sites but was absent from unaffected sites. Experimentally challenging naïve urchins with a Philaster culture isolated from an abnormal, field-collected specimen resulted in gross signs consistent with those of the mortality event. The same ciliate was recovered from treated specimens postmortem, thus fulfilling Koch's postulates for this microorganism. We term this condition D. antillarum scuticociliatosis.

Original languageEnglish
Article numbereadg3200
Number of pages10
JournalScience Advances
Volume9
Issue number16
DOIs
Publication statusPublished - 19 Apr 2023

Fingerprint

Dive into the research topics of 'A scuticociliate causes mass mortality of Diadema antillarum in the Caribbean Sea'. Together they form a unique fingerprint.

Cite this