A review of environmental enrichment for laying hens during rearing in relation to their behavioral and physiological development

D.L.M. Campbell, E.N. de Haas, Caroline Lee

Research output: Contribution to journalArticleAcademicpeer-review

2 Citations (Scopus)

Abstract

Globally, laying hen production systems are a focus of concern for animal welfare. Recently, the impacts of rearing environments have attracted attention, particularly with the trend toward more complex production systems including aviaries, furnished cages, barn, and free-range. Enriching the rearing environments with physical, sensory, and stimulatory additions can optimize the bird's development but commercial-scale research is limited. In this review, “enrichment” is defined as anything additional added to the bird's environment including structurally complex rearing systems. The impacts of enrichments on visual development, neurobehavioral development, auditory stimulation, skeletal development, immune function, behavioral development of fear and pecking, and specifically pullets destined for free-range systems are summarized and areas for future research identified. Visual enrichment and auditory stimulation may enhance neural development but specific mechanisms of impact and suitable commercial enrichments still need elucidating. Enrichments that target left/right brain hemispheres/behavioral traits may prepare birds for specific types of adult housing environments (caged, indoor, outdoor). Similarly, structural enrichments are needed to optimize skeletal development depending on the adult layer system, but specific physiological processes resulting from different types of exercise are poorly understood. Stimulating appropriate pecking behavior from hatch is critical but producers will need to adapt to different flock preferences to provide enrichments that are utilized by each rearing group. Enrichments have potential to enhance immune function through the application of mild stressors that promote adaptability, and this same principle applies to free-range pullets destined for variable outdoor environments. Complex rearing systems may have multiple benefits, including reducing fear, that improve the transition to the layer facility. Overall, there is a need to commercially validate positive impacts of cost-effective enrichments on bird behavior and physiology.
LanguageEnglish
Pages9-28
JournalPoultry Science
Volume98
Issue number1
Early online date11 Aug 2018
DOIs
Publication statusPublished - 1 Jan 2019

Fingerprint

environmental enrichment
laying hens
rearing
pecking
skeletal development
pullets
birds
fearfulness
production technology
aviaries
neurodevelopment
barns
animal welfare
flocks
cages
exercise
physiology
brain

Cite this

@article{cf65be46cdc24b589d088a37d90d547e,
title = "A review of environmental enrichment for laying hens during rearing in relation to their behavioral and physiological development",
abstract = "Globally, laying hen production systems are a focus of concern for animal welfare. Recently, the impacts of rearing environments have attracted attention, particularly with the trend toward more complex production systems including aviaries, furnished cages, barn, and free-range. Enriching the rearing environments with physical, sensory, and stimulatory additions can optimize the bird's development but commercial-scale research is limited. In this review, “enrichment” is defined as anything additional added to the bird's environment including structurally complex rearing systems. The impacts of enrichments on visual development, neurobehavioral development, auditory stimulation, skeletal development, immune function, behavioral development of fear and pecking, and specifically pullets destined for free-range systems are summarized and areas for future research identified. Visual enrichment and auditory stimulation may enhance neural development but specific mechanisms of impact and suitable commercial enrichments still need elucidating. Enrichments that target left/right brain hemispheres/behavioral traits may prepare birds for specific types of adult housing environments (caged, indoor, outdoor). Similarly, structural enrichments are needed to optimize skeletal development depending on the adult layer system, but specific physiological processes resulting from different types of exercise are poorly understood. Stimulating appropriate pecking behavior from hatch is critical but producers will need to adapt to different flock preferences to provide enrichments that are utilized by each rearing group. Enrichments have potential to enhance immune function through the application of mild stressors that promote adaptability, and this same principle applies to free-range pullets destined for variable outdoor environments. Complex rearing systems may have multiple benefits, including reducing fear, that improve the transition to the layer facility. Overall, there is a need to commercially validate positive impacts of cost-effective enrichments on bird behavior and physiology.",
author = "D.L.M. Campbell and {de Haas}, E.N. and Caroline Lee",
year = "2019",
month = "1",
day = "1",
doi = "10.3382/ps/pey319",
language = "English",
volume = "98",
pages = "9--28",
journal = "Poultry Science",
issn = "0032-5791",
publisher = "Oxford University Press",
number = "1",

}

A review of environmental enrichment for laying hens during rearing in relation to their behavioral and physiological development. / Campbell, D.L.M.; de Haas, E.N.; Lee, Caroline.

In: Poultry Science, Vol. 98, No. 1, 01.01.2019, p. 9-28.

Research output: Contribution to journalArticleAcademicpeer-review

TY - JOUR

T1 - A review of environmental enrichment for laying hens during rearing in relation to their behavioral and physiological development

AU - Campbell, D.L.M.

AU - de Haas, E.N.

AU - Lee, Caroline

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Globally, laying hen production systems are a focus of concern for animal welfare. Recently, the impacts of rearing environments have attracted attention, particularly with the trend toward more complex production systems including aviaries, furnished cages, barn, and free-range. Enriching the rearing environments with physical, sensory, and stimulatory additions can optimize the bird's development but commercial-scale research is limited. In this review, “enrichment” is defined as anything additional added to the bird's environment including structurally complex rearing systems. The impacts of enrichments on visual development, neurobehavioral development, auditory stimulation, skeletal development, immune function, behavioral development of fear and pecking, and specifically pullets destined for free-range systems are summarized and areas for future research identified. Visual enrichment and auditory stimulation may enhance neural development but specific mechanisms of impact and suitable commercial enrichments still need elucidating. Enrichments that target left/right brain hemispheres/behavioral traits may prepare birds for specific types of adult housing environments (caged, indoor, outdoor). Similarly, structural enrichments are needed to optimize skeletal development depending on the adult layer system, but specific physiological processes resulting from different types of exercise are poorly understood. Stimulating appropriate pecking behavior from hatch is critical but producers will need to adapt to different flock preferences to provide enrichments that are utilized by each rearing group. Enrichments have potential to enhance immune function through the application of mild stressors that promote adaptability, and this same principle applies to free-range pullets destined for variable outdoor environments. Complex rearing systems may have multiple benefits, including reducing fear, that improve the transition to the layer facility. Overall, there is a need to commercially validate positive impacts of cost-effective enrichments on bird behavior and physiology.

AB - Globally, laying hen production systems are a focus of concern for animal welfare. Recently, the impacts of rearing environments have attracted attention, particularly with the trend toward more complex production systems including aviaries, furnished cages, barn, and free-range. Enriching the rearing environments with physical, sensory, and stimulatory additions can optimize the bird's development but commercial-scale research is limited. In this review, “enrichment” is defined as anything additional added to the bird's environment including structurally complex rearing systems. The impacts of enrichments on visual development, neurobehavioral development, auditory stimulation, skeletal development, immune function, behavioral development of fear and pecking, and specifically pullets destined for free-range systems are summarized and areas for future research identified. Visual enrichment and auditory stimulation may enhance neural development but specific mechanisms of impact and suitable commercial enrichments still need elucidating. Enrichments that target left/right brain hemispheres/behavioral traits may prepare birds for specific types of adult housing environments (caged, indoor, outdoor). Similarly, structural enrichments are needed to optimize skeletal development depending on the adult layer system, but specific physiological processes resulting from different types of exercise are poorly understood. Stimulating appropriate pecking behavior from hatch is critical but producers will need to adapt to different flock preferences to provide enrichments that are utilized by each rearing group. Enrichments have potential to enhance immune function through the application of mild stressors that promote adaptability, and this same principle applies to free-range pullets destined for variable outdoor environments. Complex rearing systems may have multiple benefits, including reducing fear, that improve the transition to the layer facility. Overall, there is a need to commercially validate positive impacts of cost-effective enrichments on bird behavior and physiology.

U2 - 10.3382/ps/pey319

DO - 10.3382/ps/pey319

M3 - Article

VL - 98

SP - 9

EP - 28

JO - Poultry Science

T2 - Poultry Science

JF - Poultry Science

SN - 0032-5791

IS - 1

ER -