A plant-based chemical genomics screen for the identification of flowering inducers

Martijn Fiers, Jorin Hoogenboom, Alice Brunazzi, Tom Wennekes, Gerco C. Angenent, Richard G.H. Immink*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

3 Citations (Scopus)

Abstract

Background: Floral timing is a carefully regulated process, in which the plant determines the optimal moment to switch from the vegetative to reproductive phase. While there are numerous genes known that control flowering time, little information is available on chemical compounds that are able to influence this process. We aimed to discover novel compounds that are able to induce flowering in the model plant Arabidopsis. For this purpose we developed a plant-based screening platform that can be used in a chemical genomics study. Results: Here we describe the set-up of the screening platform and various issues and pitfalls that need to be addressed in order to perform a chemical genomics screening on Arabidopsis plantlets. We describe the choice for a molecular marker, in combination with a sensitive reporter that's active in plants and is sufficiently sensitive for detection. In this particular screen, the firefly Luciferase marker was used, fused to the regulatory sequences of the floral meristem identity gene APETALA1 (AP1), which is an early marker for flowering. Using this screening platform almost 9000 compounds were screened, in triplicate, in 96-well plates at a concentration of 25μM. One of the identified potential flowering inducing compounds was studied in more detail and named Flowering1 (F1). F1 turned out to be an analogue of the plant hormone Salicylic acid (SA) and appeared to be more potent than SA in the induction of flowering. The effect could be confirmed by watering Arabidopsis plants with SA or F1, in which F1 gave a significant reduction in time to flowering in comparison to SA treatment or the control. Conclusions: In this study a chemical genomics screening platform was developed to discover compounds that can induce flowering in Arabidopsis. This platform was used successfully, to identify a compound that can speed-up flowering in Arabidopsis.

Original languageEnglish
Article number78
Number of pages9
JournalPlant Methods
Volume13
DOIs
Publication statusPublished - 3 Oct 2017

Keywords

  • APETALA1
  • Arabidopsis
  • Chemical genomics
  • Flowering
  • Luciferase
  • Salicylic acid

Fingerprint Dive into the research topics of 'A plant-based chemical genomics screen for the identification of flowering inducers'. Together they form a unique fingerprint.

Cite this