A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching

T. Kretzschmar, W. Kohlen, J. Sasse, L. Borghi, M. Schlegel, J.B. Bachelier, D. Reinhardt, R.M.E.H. Bours, H.J. Bouwmeester, E. Martinoia

Research output: Contribution to journalArticleAcademicpeer-review

325 Citations (Scopus)

Abstract

Strigolactones were originally identified as stimulators of the germination of root-parasitic weeds1 that pose a serious threat to resource-limited agriculture2. They are mostly exuded from roots and function as signalling compounds in the initiation of arbuscular mycorrhizae3, which are plant–fungus symbionts with a global effect on carbon and phosphate cycling4. Recently, strigolactones were established to be phytohormones that regulate plant shoot architecture by inhibiting the outgrowth of axillary buds5, 6. Despite their importance, it is not known how strigolactones are transported. ATP-binding cassette (ABC) transporters, however, are known to have functions in phytohormone translocation7, 8, 9. Here we show that the Petunia hybrida ABC transporter PDR1 has a key role in regulating the development of arbuscular mycorrhizae and axillary branches, by functioning as a cellular strigolactone exporter. P. hybrida pdr1 mutants are defective in strigolactone exudation from their roots, resulting in reduced symbiotic interactions. Above ground, pdr1 mutants have an enhanced branching phenotype, which is indicative of impaired strigolactone allocation. Overexpression of Petunia axillaris PDR1 in Arabidopsis thaliana results in increased tolerance to high concentrations of a synthetic strigolactone, consistent with increased export of strigolactones from the roots. PDR1 is the first known component in strigolactone transport, providing new opportunities for investigating and manipulating strigolactone-dependent processes.
Original languageEnglish
Pages (from-to)341-344
JournalNature
Volume483
Issue number7389
DOIs
Publication statusPublished - 2012

Keywords

  • arbuscular-mycorrhizal fungi
  • medicago-truncatula
  • auxin transport
  • abscisic-acid
  • gene family
  • arabidopsis
  • pcr
  • germination
  • inhibition
  • pathway

Fingerprint Dive into the research topics of 'A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching'. Together they form a unique fingerprint.

Cite this