@inproceedings{7990f42f03614fbca5dcb86467644178,
title = "A novel parallel nanomixer for high-throughput single-molecule fluorescence detection",
abstract = "This paper introduces a novel fluidic device based on syringe-driven flow of fluorescent species through a parallel array of nanochannels, in which the geometrical confinement enables long observation times of non-immobilized molecules. Extremely low flow rates are achieved by operating the array of nanochannels in parallel with a larger microchannel. The addition of a second microfluidic inlet allows for mixing different species in a well-defined volume, enabling the study of irreversible reactions such as DNA synthesis in real-time using single-molecule fluorescence resonance energy transfer. Devices are fabricated in glass with the purpose of high-throughput single-molecule fluorescence detection.",
keywords = "Fluorescence detection, Nanochannel, Nanofluidic mixing, Single molecules",
author = "Klaus Mathwig and Stefan Schlautmann and Lemay, {Serge G.} and Johannes Hohlbein",
year = "2013",
language = "English",
isbn = "9781632666246",
series = "17th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2013",
publisher = "Chemical and Biological Microsystems Society",
pages = "1385--1387",
booktitle = "17th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2013",
note = "17th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2013 ; Conference date: 27-10-2013 Through 31-10-2013",
}