TY - JOUR
T1 - A novel class of PTEN protein in Arabidopsis displays unusual phosphoinositide phosphatase activity and efficiently binds phosphatidic acid
AU - Pribat, Anne
AU - Sormani, Rodnay
AU - Rousseau-Gueutin, Mathieu
AU - Julkowska, Magdalena M.
AU - Testerink, Christa
AU - Joubès, Jerôme
AU - Castroviejo, Michel
AU - Laguerre, Michel
AU - Meyer, Christian
AU - Germain, Véronique
AU - Rothan, Christophe
PY - 2012/1
Y1 - 2012/1
N2 - PTEN (phosphatase and tensin homologue deleted on chromosome ten) proteins are dual phosphatases with both protein and phosphoinositide phosphatase activity. Theymodulate signalling pathways controlling growth, metabolism and apoptosis in animals and are implied in several human diseases. In the present paper we describe a novel class of PTEN proteins in plants, termed PTEN2, which comprises the AtPTEN (Arabidopsis PTEN) 2a and AtPTEN2b proteins in Arabidopsis. Both display low in vitro tyrosine phosphatase activity. In addition, AtPTEN2a actively dephosphorylates in vitro the 3′phosphate group of PI3P (phosphatidylinositol 3-phosphate), PI(3,4)P 2 (phosphatidylinositol 3,4-bisphosphate) and PI(3,5)P 2(phosphatidylinositol 3,5-bisphosphate). In contrast with animal PTENs, PI(3,4,5)P 3 (phosphatidylinositol 3,4,5-trisphosphate) is a poor substrate. Site-directed mutagenesis of AtPTEN2a and molecular modelling of protein-phosphoinositide interactions indicated that substitutions at the PTEN2 core catalytic site of the Lys 267 and Gly 268 residues found in animals, which are critical for animal PTENactivity, by Met 267 and Ala 268 found in the eudicot PTEN2 are responsible for changes in substrate specificity. Remarkably, the AtPTEN2a protein also displays strong binding activity for PA (phosphatidic acid), a major lipid second messenger in plants. Promoter::GUS (β-glucuronidase) fusion, transcript and protein analyses further showed the transcriptional regulation of the ubiquitously expressed AtPTEN2a and AtPTEN2b by salt and osmotic stress. The results of the present study suggest a function for this novel class of plant PTEN proteins as an effector of lipid signalling in plants.
AB - PTEN (phosphatase and tensin homologue deleted on chromosome ten) proteins are dual phosphatases with both protein and phosphoinositide phosphatase activity. Theymodulate signalling pathways controlling growth, metabolism and apoptosis in animals and are implied in several human diseases. In the present paper we describe a novel class of PTEN proteins in plants, termed PTEN2, which comprises the AtPTEN (Arabidopsis PTEN) 2a and AtPTEN2b proteins in Arabidopsis. Both display low in vitro tyrosine phosphatase activity. In addition, AtPTEN2a actively dephosphorylates in vitro the 3′phosphate group of PI3P (phosphatidylinositol 3-phosphate), PI(3,4)P 2 (phosphatidylinositol 3,4-bisphosphate) and PI(3,5)P 2(phosphatidylinositol 3,5-bisphosphate). In contrast with animal PTENs, PI(3,4,5)P 3 (phosphatidylinositol 3,4,5-trisphosphate) is a poor substrate. Site-directed mutagenesis of AtPTEN2a and molecular modelling of protein-phosphoinositide interactions indicated that substitutions at the PTEN2 core catalytic site of the Lys 267 and Gly 268 residues found in animals, which are critical for animal PTENactivity, by Met 267 and Ala 268 found in the eudicot PTEN2 are responsible for changes in substrate specificity. Remarkably, the AtPTEN2a protein also displays strong binding activity for PA (phosphatidic acid), a major lipid second messenger in plants. Promoter::GUS (β-glucuronidase) fusion, transcript and protein analyses further showed the transcriptional regulation of the ubiquitously expressed AtPTEN2a and AtPTEN2b by salt and osmotic stress. The results of the present study suggest a function for this novel class of plant PTEN proteins as an effector of lipid signalling in plants.
KW - Expression in planta
KW - Phosphatidic acid (PA) binding
KW - Phosphoinositide phosphatase
KW - Phylogenetics
KW - Site-directed mutagenesis
U2 - 10.1042/BJ20110776
DO - 10.1042/BJ20110776
M3 - Article
C2 - 21864294
AN - SCOPUS:84055213714
SN - 0264-6021
VL - 441
SP - 161
EP - 171
JO - Biochemical Journal
JF - Biochemical Journal
IS - 1
ER -