A lightweight NO2-to-NOx conversion model for quantifying NOx emissions of point sources from NO2 satellite observations

Sandro Meier*, Erik F.M. Koene, Maarten Krol, Dominik Brunner, Alexander Damm, Gerrit Kuhlmann*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Nitrogen oxides (NOx Combining double low line NO + NO2) are air pollutants which are co-emitted with CO2 during high-temperature combustion processes. Monitoring NOx emissions is crucial for assessing air quality and for providing proxy estimates of CO2 emissions. Satellite observations, such as those from the TROPOspheric Monitoring Instrument (TROPOMI) on board the Sentinel-5P satellite, provide global coverage at high temporal resolution. However, satellites measure only NO2, necessitating a conversion to NOx. Previous studies have applied a constant NO2-to-NOx conversion factor. In this paper, we develop a more realistic model for NO2-to-NOx conversion and apply it to TROPOMI data of 2020 and 2021. To achieve this, we analysed plume-resolving simulations from the MicroHH large-eddy simulation model with chemistry for the Bełchatów (PL), Jänschwalde (DE), Matimba (ZA) and Medupi (ZA) power plants, as well as a metallurgical plant in Lipetsk (RU). We used the cross-sectional flux method to calculate NO, NO2 and NOx line densities from simulated NO and NO2 columns and derived NO2-to-NOx conversion factors as a function of the time since emission. Since the method of converting NO2 to NOx presented in this paper assumes steady-state conditions and that the conversion factors can be modelled by a negative exponential function, we validated the conversion factors using the same MicroHH data. Finally, we applied the derived conversion factors to TROPOMI NO2 observations of the same sources. The validation of the NO2-to-NOx conversion factors shows that they can account for the NOx chemistry in plumes, in particular for the conversion between NO and NO2 near the source and for the chemical loss of NOx further downstream. When applying these time-since-emission-dependent conversion factors, biases in NOx emissions estimated from TROPOMI NO2 images are greatly reduced from between -50 % and -42 % to between only -9.5 % and -0.5 % in comparison with reported emissions. Single-overpass estimates can be quantified with an uncertainty of 20 %-27 %, while annual NOx emission estimates have uncertainties in the range of 4 %-21 % but are highly dependent on the number of successful retrievals. Although more simulations covering a wider range of meteorological and trace gas background conditions will be needed to generalise the approach, this study marks an important step towards a consistent, uniform, high-resolution and near-real-time estimation of NOx emissions - especially with regard to upcoming NO2-monitoring satellites such as Sentinel-4, Sentinel-5 and CO2M.

Original languageEnglish
Pages (from-to)7667-7686
Number of pages20
JournalAtmospheric Chemistry and Physics
Volume24
Issue number13
DOIs
Publication statusPublished - 5 Jul 2024

Fingerprint

Dive into the research topics of 'A lightweight NO2-to-NOx conversion model for quantifying NOx emissions of point sources from NO2 satellite observations'. Together they form a unique fingerprint.

Cite this