A GC-IRMS method for measuring sulfur isotope ratios of carbonyl sulfide from small air samples

Sophie L. Baartman*, Maarten C. Krol, Thomas Röckmann, Shohei Hattori, Kazuki Kamezaki, Naohiro Yoshida, Maria Elena Popa

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review


A new system was developed for measuring sulfur isotopes δ 33S and δ 34S from atmospheric carbonyl sulfide (COS) on small air samples of several liters, using pre-concentration and gas chromatography – isotope ratio mass spectrometry (GC-IRMS). Measurements of COS isotopes provide a tool for quantifying the COS budget, which will help towards better understanding climate feedback mechanisms. For a 4 liter sample at ambient COS mixing ratio, ~500 parts per trillion (ppt), we obtain a reproducibility error of 2.1 ‰ for δ 33S and 0.4 ‰ for δ 34S. After applying corrections, the uncertainty for an individual ambient air sample measurement is 2.5 ‰ for δ 33S and 0.9 ‰ for δ 34S. The ability to measure small samples allows application to a global-scale sampling program with limited logistical effort. To illustrate the application of this newly developed system, we present a timeseries of ambient air measurements, during the fall and winter of 2020 and 2021 in Utrecht, the Netherlands. The observed background values were δ 33S = 1.0 ± 3.4 ‰ and δ 34S = 15.5 ± 0.8 ‰ (VCDT). The maximum observed COS mixing ratios was only 620 ppt. This, in combination with the relatively high δ 34S suggests that the Netherlands receives little COS-containing anthropogenic emissions. We observed a change in COS mixing ratio and δ 34S with different air mass origin, as modelled with HYSPLIT backward trajectory analyses. An increase of 40 ppt in mean COS mixing ratio was observed between fall and winter, which is consistent with the expected seasonal cycle in the Netherlands. Additionally, we present the results of samples from a highway tunnel to characterize vehicle COS emissions and isotopic composition. The vehicle emissions were small, with COS/CO 2 being 0.4 ppt/ppm; the isotopic signatures are depleted relatively to background atmospheric COS.
Original languageEnglish
Article number105
JournalOpen Research Europe
Publication statusPublished - 8 Mar 2022


Dive into the research topics of 'A GC-IRMS method for measuring sulfur isotope ratios of carbonyl sulfide from small air samples'. Together they form a unique fingerprint.

Cite this