Projects per year
Abstract
BACKGROUND: A multipopulation genomic prediction (GP) model in which important preselected single nucleotide polymorphisms (SNPs) are differentially weighted (MPMG) has been shown to result in better prediction accuracy than a multipopulation, single genomic relationship matrix ([Formula: see text]) GP model (MPSG) in which all SNPs are weighted equally. Our objective was to underpin theoretically the advantages and limits of the MPMG model over the MPSG model, by deriving and validating a deterministic prediction equation for its accuracy. METHODS: Using selection index theory, we derived an equation to predict the accuracy of estimated total genomic values of selection candidates from population [Formula: see text] ([Formula: see text]), when individuals from two populations, [Formula: see text] and [Formula: see text], are combined in the training population and two [Formula: see text], made respectively from preselected and remaining SNPs, are fitted simultaneously in MPMG. We used simulations to validate the prediction equation in scenarios that differed in the level of genetic correlation between populations, heritability, and proportion of genetic variance explained by the preselected SNPs. Empirical accuracy of the MPMG model in each scenario was calculated and compared to the predicted accuracy from the equation. RESULTS: In general, the derived prediction equation resulted in accurate predictions of [Formula: see text] for the scenarios evaluated. Using the prediction equation, we showed that an important advantage of the MPMG model over the MPSG model is its ability to benefit from the small number of independent chromosome segments ([Formula: see text]) due to the preselected SNPs, both within and across populations, whereas for the MPSG model, there is only a single value for [Formula: see text], calculated based on all SNPs, which is very large. However, this advantage is dependent on the preselected SNPs that explain some proportion of the total genetic variance for the trait. CONCLUSIONS: We developed an equation that gives insight into why, and under which conditions the MPMG outperforms the MPSG model for GP. The equation can be used as a deterministic tool to assess the potential benefit of combining information from different populations, e.g., different breeds or lines for GP in livestock or plants, or different groups of people based on their ethnic background for prediction of disease risk scores.
Original language  English 

Article number  52 
Number of pages  22 
Journal  Genetics, selection, evolution : GSE 
Volume  52 
Issue number  1 
DOIs  
Publication status  Published  28 Apr 2020 
Fingerprint Dive into the research topics of 'A deterministic equation to predict the accuracy of multipopulation genomic prediction with multiple genomic relationship matrices'. Together they form a unique fingerprint.
Projects
 1 Active

AF16022 Breed4Food II (BO63001009, BO47001021, BO22.04025001, BO22.04011001, BO22.02011001)
1/01/14 → 31/12/21
Project: EZproject