A comprehensive metatranscriptome analysis pipeline and its validation using human small intestine microbiota datasets

M.M. Leimena, J. Ramiro-Garcia, M. Davids, B. van den Bogert, H. Smidt, E.J. Smid, J. te Boekhorst, E.G. Zoetendal, P.J. Schaap, M. Kleerebezem

Research output: Contribution to journalArticleAcademicpeer-review

94 Citations (Scopus)

Abstract

Background: Next generation sequencing (NGS) technologies can be applied in complex microbial ecosystems for metatranscriptome analysis by employing direct cDNA sequencing, which is known as RNA sequencing (RNA-seq). RNA-seq generates large datasets of great complexity, the comprehensive interpretation of which requires a reliable bioinformatic pipeline. In this study, we focus on the development of such a metatranscriptome pipeline, which we validate using Illumina RNA-seq datasets derived from the small intestine microbiota of two individuals with an ileostomy. Results: The metatranscriptome pipeline developed here enabled effective removal of rRNA derived sequences, followed by confident assignment of the predicted function and taxonomic origin of the mRNA reads. Phylogenetic analysis of the small intestine metatranscriptome datasets revealed a strong similarity with the community composition profiles obtained from 16S rDNA and rRNA pyrosequencing, indicating considerable congruency between community composition (rDNA), and the taxonomic distribution of overall (rRNA) and specific (mRNA) activity among its microbial members. Reproducibility of the metatranscriptome sequencing approach was established by independent duplicate experiments. In addition, comparison of metatranscriptome analysis employing single- or paired-end sequencing methods indicated that the latter approach does not provide improved functional or phylogenetic insights. Metatranscriptome functional-mapping allowed the analysis of global, and genus specific activity of the microbiota, and illustrated the potential of these approaches to unravel syntrophic interactions in microbial ecosystems. Conclusions: A reliable pipeline for metatransciptome data analysis was developed and evaluated using RNA-seq datasets obtained for the human small intestine microbiota. The set-up of the pipeline is very generic and can be applied for (bacterial) metatranscriptome analysis in any chosen niche.
Original languageEnglish
Article number530
Number of pages14
JournalBMC Genomics
Volume14
DOIs
Publication statusPublished - 2013

Keywords

  • ribosomal-rna
  • gene-expression
  • bacteria
  • seq
  • transcriptomes
  • diversity
  • quality
  • metagenomics
  • communities
  • identities

Fingerprint

Dive into the research topics of 'A comprehensive metatranscriptome analysis pipeline and its validation using human small intestine microbiota datasets'. Together they form a unique fingerprint.

Cite this