Projects per year
Abstract
Decision making towards climate proofing the water management of regional catchments can benefit greatly from
the availability of a climate robust integrated modelling framework, capable of a consistent assessment of climate
change impacts on the various interests present in the catchments.
In the Netherlands, much effort has been devoted to developing state-of-the-art regional dynamic groundwater
models with a very high spatial resolution (25x25 m2). Still, these models are not completely satisfactory to
decision makers because the modelling concepts do not take into account feedbacks between meteorology, vegetation/
crop growth, and hydrology. This introduces uncertainties in forecasting the effects of climate change on
groundwater, surface water, agricultural yields, and development of groundwater dependent terrestrial ecosystems.
These uncertainties add to the uncertainties about the predictions on climate change itself.
In order to create an integrated, climate robust modelling framework, we coupled existing model codes on
hydrology, agriculture and nature that are currently in use at the different research institutes in the Netherlands.
The modelling framework consists of the model codes MODFLOW (groundwater flow), MetaSWAP (vadose
zone), WOFOST (crop growth), SMART2-SUMO2 (soil-vegetation) and NTM3 (nature valuation). MODFLOW,
MetaSWAP and WOFOST are coupled online (i.e. exchange information on time step basis). Thus, changes in
meteorology and CO2-concentrations affect crop growth and feedbacks between crop growth, vadose zone water
movement and groundwater recharge are accounted for. The model chain WOFOST-MetaSWAP-MODFLOW
generates hydrological input for the ecological prediction model combination SMART2-SUMO2-NTM3.
The modelling framework was used to support the regional water management decision making process in
the 267 km2 Baakse Beek-Veengoot catchment in the east of the Netherlands. Computations were performed for
regionalized 30-year climate change scenarios developed by KNMI for precipitation and reference evapotranspiration
according to Penman-Monteith. Special focus in the project was on the role of uncertainty. How valid is
the information that is generated by this modelling framework? What are the most important uncertainties of the
input data, how do they affect the results of the model chain and how can the uncertainties of the data, results,
and model concepts be quantified and communicated? Besides these technical issues, an important part of the
study was devoted to the perception of stakeholders. Stakeholder analysis and additional working sessions yielded
insight into how the models, their results and the uncertainties are perceived, how the modelling framework and
results connect to the stakeholders’ information demands and what kind of additional information is needed for
adequate support on decision making.
Original language | English |
---|---|
Publication status | Published - 2013 |
Event | EGU General Assembly 2013 - Vienna, Austria Duration: 7 Apr 2013 → 12 Apr 2013 |
Conference/symposium
Conference/symposium | EGU General Assembly 2013 |
---|---|
Country/Territory | Austria |
City | Vienna |
Period | 7/04/13 → 12/04/13 |
Keywords
- climatic change
- groundwater level
- crop growth models
- evaporation
- groundwater
- models
Fingerprint
Dive into the research topics of 'A climate robust integrated modelling framework for regional impact assessment of climate change'. Together they form a unique fingerprint.-
ESS-CC
Project: Other
-
Modelinfrastructuur deel Gewasgroei: feedbacks tussen klimaat vegetatie, bodem en grondwater (KB-14-001-010, KB-12-004.03-001, KB-02-002-080)
Kroes, J. (Project Leader)
1/01/09 → 31/12/12
Project: LVVN project
-
Internationale dimensies van Nederlands adaptatiebeleid: omgaan met onzekerheden (KB-14-001-019, KB-02-004-087)
Groot, A. (Project Leader)
1/01/09 → 31/12/13
Project: LVVN project