2-Butanone as a carbon dioxide mimic in attractant blends for the Afrotropical malaria mosquitoes Anopheles gambiae and Anopheles funestus

Monicah M. Mburu, Collins K. Mweresa, Philemon Omusula, Alexandra Hiscox, Willem Takken, Wolfgang R. Mukabana*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

8 Citations (Scopus)

Abstract

Background: Most odour baits designed to attract host-seeking mosquitoes contain carbon dioxide (CO2), which enhances trap catches, given its role as a mosquito flight activator. However, the use of CO2 is expensive and logistically demanding for prolonged area-wide use. Methods: This study explored the possibility of replacing organically-produced CO2 with 2-butanone in odour blends targeting host-seeking malaria mosquitoes. During semi-field and field experiments MM-X traps were baited with a human odour mimic (MB5 blend) plus CO2 or 2-butanone at varying concentrations. Unbaited traps formed a control. The attraction of Anopheles gambiae s.s., Anopheles arabiensis and Anopheles funestus to these differently baited traps was measured and mean catch sizes were compared to determine whether 2-butanone could form a viable replacement for CO2 for these target species. Results: Under semi-field conditions significantly more female An. gambiae mosquitoes were attracted to a reference attractant blend (MB5 + CO2) compared to MB5 without CO2 (P < 0.001), CO2 alone (P < 0.001), or a trap without a bait (P < 0.001). Whereas MB5 + CO2 attracted significantly more mosquitoes than its variants containing MB5 plus different dilutions of 2-butanone (P = 0.001), the pure form (99.5%) and the 1.0% dilution of 2-butanone gave promising results. In the field mean indoor catches of wild female An. gambiae s.l. in traps containing MB5 + CO2 (5.07 ± 1.01) and MB5 + 99.5% 2-butanone (3.10 ± 0.65) did not differ significantly (P = 0.09). The mean indoor catches of wild female An. funestus attracted to traps containing MB5 + CO2 (3.87 ± 0.79) and MB5 + 99.5% 2-butanone (3.37 ± 0.70) were also similar (P = 0.635). Likewise, the mean outdoor catches of An. gambiae and An. funestus associated with MB5 + CO2 (1.63 ± 0.38 and 0.53 ± 0.17, respectively) and MB5 + 99.5% 2-butanone (1.33 ± 0.32 and 0.40 ± 0.14, respectively) were not significantly different (P = 0.544 and P = 0.533, respectively). Conclusion: These results demonstrate that 2-butanone can serve as a good replacement for CO2 in synthetic blends of attractants designed to attract host-seeking An. gambiae s.l. and An. funestus mosquitoes. This development underscores the possibility of using odour-baited traps (OBTs) for monitoring and surveillance as well as control of malaria vectors and potentially other mosquito species.

Original languageEnglish
Article number351
Number of pages9
JournalMalaria Journal
Volume16
DOIs
Publication statusPublished - 2017

Keywords

  • 017-4005

Fingerprint Dive into the research topics of '2-Butanone as a carbon dioxide mimic in attractant blends for the Afrotropical malaria mosquitoes Anopheles gambiae and Anopheles funestus'. Together they form a unique fingerprint.

Cite this