Cyanophycin from Urine

Project: PhD

Project Details

Description

Human urine has high nutrient content, containing up to 80% of the nitrogen (N) and 40% of the phosphorus (P) that end up in household wastewater, while accounting for only 1% of its volume (Kujawa-Roeleveld & Zeeman, 2006). Microalgae have previously been shown to grow in undiluted urine when employing high light supply rates and short light path photobioreactors, making it possible to recover most of these nutrients in form of biomass (Tuantet et al., 2014). However, the N:P ratio of urine (30-47:1) limited microalgae growth along with the recovery of N. The phosphorus limitation could be overcome by cyanobacteria, which accumulate a storage material called Cyanophycin Granule Polypeptide (CGP) when facing P limitation. CGP has potential applications as dispersant and as a raw material for bioplastics production (Joentgen, et al., 2001). In this context, the production of cyanobacterial biomass on source-separated urine could make it possible to fully recover these nutrients, and even transform a significant fraction of them into useful products for industry, contributing to a circular economy. The aim of this project is to grow cyanobacteria on urine and in this manner combine urine treatment with CGP production and biorecovery of nutrients. Additionally, phycobiliproteins and other compounds could be recovered as by-products.
StatusFinished
Effective start/end date1/03/166/09/24

Fingerprint

Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.