Critical Transitions in Complex Systems

    Project: EU research project

    Project Details


    Complex systems research has been on the forefront of scientific priorities of many national research councils and the EUfor more than a decade. Many very interesting phenomena have been identified and explored, but the development of theunderpinning mathematical theory has been lagging behind. The proposed training network builds on an emergingdevelopment in applied mathematics to provide proper mathematical theory for the existence of early-warning signals forsudden changes in dynamical behaviour, so-called critical transitions, which have been reported by applied scientists invarious contexts.Practical implications for the existence of such early-warning signals are far reaching, since these would enable thedevelopment of better control strategies to avoid or diminish the effect of catastrophes. Topical examples include epilepticseizures, stock market collapses, earthquakes, and climate.Attending to the mathematical underpinning for critical transitions in complex systems, it is apparent that the relevantmathematical discipline of bifurcation theory, that has been developed to great acclaim and use for primarily low-dimensionaldeterministic autonomous (i.e. intrinsically time-independent) dynamical systems, and (in the context of phase transitions)for material science, does not apply without nontrivial modification to most of the complex systems contexts.The training network is a response to the needs of applied scientists (including many in the private sector) for a propermathematical underpinning of early-warning signals. After their training, the trained researchers will be at the very forefrontof this rapidly developing field, with many practical skills and crucial theoretical insights into the possibilities (and impossibilities) of early-warning signals for critical transitions in a wide range of contexts.
    Effective start/end date1/04/1531/03/19


    Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.