Supplementary information: Analysis of natural variation in photosynthesis in a panel of Brassicaceae species



This data supports the conclusions derived from an high- and low-throughput investigation of natural variation in photosynthetic light-use efficiency (LUE), and a number of traits potentially correlated to it, in a panel of ten Brassicaceae species. In this study, I performed an analysis of photosynthetic efficiency at high irradiance in ten species that reflect key evolutionary events within the Brassicaceae family: Arabidopsis thaliana, Brassica oleracea, Brassica nigra, Brassica rapa, Brassica tournefortii, Erucastrum littoreum, Hirschfeldia incana, Sinapis alba, Sisymbrium irio, and Zahora ait-atta. I made use of high-throughput phenotyping techniques to measure photosynthetic efficiency, and integrated these measurements with other image-based parameters, such as the Excess Green Index (ExGI) and the Normalized Difference Vegetation Index (NDVI), as well as a range of anatomical and biochemical characteristics that potentially influence photosynthetic efficiency. I then explored the resulting multivariate dataset using various statistical methods to identify trends across species and investigated if more species within the Brassicaceae family show high-photosynthetic LUE at high irradiance. Furthermore, I assessed the alignment of these trends with the evolutionary history of the Brassicaceae family. This study delivers a detailed description of inter-specific variation in photosynthetic parameters for the Brassicaceae family, completed by a selection of anatomical and biochemical characteristics that may play a role in supporting high photosynthetic LUE under high irradiance. The gained insights will be important in developing strategies to enhance the photosynthetic LUE at high irradiance of crop species.
Date made available31 Aug 2023
PublisherWageningen University & Research


  • brassicaceae
  • high-trhoughput phenotyping
  • natural variation
  • photosynthesis

Cite this