Supplementary data: Combined biotic and abiotic stress resistance in tomato

Dataset

Description

Abiotic and biotic stress factors are the major constrains for the realization of crop yield potential. As climate change progresses, the spread and intensity of abiotic as well as biotic stressors is expected to increase, with increased probability of crops being exposed to both types of stress. Shielding crops from combinatorial stress requires a better understanding of the plant’s response and its genetic architecture. In this study, we evaluated resistance to salt stress, powdery mildew and to both stresses combined in tomato, using the S. habrochaites LYC4 introgression line (IL) population. The IL population segregated for both salt stress tolerance and powdery mildew resistance. Using SNP array marker data, QTLs were identified for salt tolerance as well as Na+ and Cl- accumulation. Salt stress increased the susceptibility of the population to powdery mildew in an additive manner. Phenotypic variation for disease resistance was reduced under combined stress as indicated by the coefficient of variation (CV). No correlation was found between disease resistance and Na+ and Cl- accumulation under combined stress Most genetic loci were specific for either salt stress tolerance or powdery mildew resistance. These findings increase our understanding of the genetic regulation of responses to abiotic and biotic stress combinations and can provide leads to more efficiently breeding for tomatoes and other crops with a high level of disease resistance while maintaining their performance in combination with abiotic stress.
Date made available2016
PublisherWageningen UR
Temporal coverage2012

Keywords

  • solanum lycopersicum
  • tomatoes
  • disease resistance
  • stress tolerance
  • defence mechanisms
  • plant diseases
  • abiotic injuries
  • stress response
  • phenotypic variation
  • genetic analysisplant breeding
  • salt tolerance

Cite this