Profile hidden Markov models trained on aligned KEGG Orthology sequences for enzyme annotation. These HMMs were used to reconstruct metabolic networks for the manuscript: The genome of Peronospora belbahrii reveals high heterozygosity, a low number of canonical effectors and CT-rich promoters
Thines, M., Sharma, R., Rodenburg, Y. A., Gogleva, A., Judelson, H. S., Xia, X., van den Hoogen, D. J., Kitner, M., Klein, J., Neilen, M., de Ridder, D., Seidl, M. F., van den Ackerveken, G., Govers, F., Schornack, S. & Studholme, D. J., 31 Jul 2019, BioRxiv.
Research output: Working paper › Preprint
Open Access
Cite this
DataSetCite
Rodenburg, Y. A. (Creator), de Ridder, D. (Contributor), Govers, F. (Contributor), Seidl, M. F. (Creator) (7 Oct 2019). Profile hidden Markov models trained on aligned KEGG Orthology sequences for enzyme annotation. Wageningen University & Research. 10.4121/uuid:9b6e6aa0-b815-409f-9e96-04828b03290b