Muscle Involvement in Preservation of Metabolic Flexibility by a Combination Treatment using n-3 PUFA, and Rosiglitazone in Dietary-Obese Mice

Dataset

Description

Impaired resistance to insulin, the key defect in type 2 diabetes (T2D), is associated with a low capacity to adapt fuel oxidation to fuel availability, i.e., metabolic inflexibility. The hampered metabolic adaptability triggers a further damage of insulin signaling. Since skeletal muscle is the main site of glucose uptake, effectiveness of T2D treatment depends in large on the improvement of insulin sensitivity and metabolic adaptability of the muscle. We have shown previously in mice fed an obesogenic high-fat diet that a combination treatment using n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) and thiazolidinedione (TZD) anti-diabetic drugs preserved metabolic health and synergistically improved muscle insulin sensitivity. We investigated here whether TZD rosiglitazone could elicit the additive beneficial effects on metabolic flexibility when combined with n-3 LC-PUFA. Adult male C57BL/6N mice were fed an obesogenic corn oil-based high-fat diet (cHF) for 8 weeks, or randomly assigned to various dietary treatments: (i) cHF+F, cHF with n-3 LC-PUFA concentrate replacing 15% of dietary lipids; (ii) cHF+ROSI, cHF with 10 mg rosiglitazone/kg diet; and (iii) cHF+F+ROSI, or chow-fed. Indirect calorimetry demonstrated superior preservation of metabolic flexibility to carbohydrates in response to the combination treatment. Metabolomic and gene expression analyses in the muscle suggested distinct and complementary effects of the single treatments, with rosiglitazone augmenting insulin sensitivity by the modulation of branched-chain amino acid metabolism, and n-3 LC PUFA supporting complete oxidation of fatty acids in mitochondria. These beneficial metabolic effects were associated with the activation of the switch between glycolytic and oxidative muscle fibers, especially in the cHF+F+ROSI mice. Our results further support the idea that the combination treatment using n-3 LC-PUFA and TZDs could improve the efficacy of the treatment of obese and diabetic patients.
Date made available7 Sep 2012
PublisherWageningen UR

Research Output

Preservation of Metabolic Flexibility in Skeletal Muscle by a Combined Use of n-3 PUFA and Rosiglitazone in Dietary Obese Mice

Horakova, O., Medrikova, D., van Schothorst, E. M., Bunschoten, A. & Keijer, J., 2012, In : PLoS ONE. 7, 8, e43764.

Research output: Contribution to journalArticleAcademicpeer-review

Open Access
  • 47 Citations (Scopus)

    Cite this

    Medrikova, D. (Creator), van Schothorst, E. M. (Creator), Bunschoten, J. E. (Creator), Flachs, P. (Creator), Kopecky, J. (Creator), Keijer, J. (Creator) (7 Sep 2012). Muscle Involvement in Preservation of Metabolic Flexibility by a Combination Treatment using n-3 PUFA, and Rosiglitazone in Dietary-Obese Mice. Wageningen UR.