Four selenoproteins, protein biosynthesis, and Wnt signalling are particularly sensitive to limited selenium intake in mouse colon

Dataset

Description

Selenium is an essential micronutrient. Its recommended daily allowance is not attained by a significant proportion of the population in many countries and its intake has been suggested to affect colorectal carcinogenesis. Therefore, microarrays were used to determine how both selenoprotein and global gene expression patterns in the mouse colon were affected by marginal selenium deficiency comparable to variations in human dietary intakes. Two groups of 12 mice each were fed a selenium-deficient (0.086mg Se/kg) or a selenium-adequate (0.15mg Se/kg) diet. After 6wk, plasma selenium level, liver, and colon glutathione peroxidase (GPx) activity in the deficient group was 12, 34, and 50%, respectively, of that of the adequate group. Differential gene expression was analysed with mouse 44K whole genome microarrays. Pathway analysis by GenMAPP identified the protein biosynthesis pathway as most significantly affected, followed by inflammation, Delta-Notch and Wnt pathways. Selected gene expression changes were confirmed by quantitative real-time PCR. GPx1 and the selenoproteins W, H, and M, responded significantly to selenium intake making them candidates as biomarkers for selenium status. Thus, feeding a marginal selenium-deficient diet resulted in distinct changes in global gene expression in the mouse colon. Modulation of cancer-related pathways may contribute to the higher susceptibility to colon carcinogenesis in low selenium status.
Date made available13 Jul 2018
PublisherWageningen University

Research Output

Four selenoproteins, protein biosynthesis, and Wnt signalling are particularly sensitive to selenium intake in mice colon

Kipp, A., Banning, A., van Schothorst, E. M., Meplan, C., Schomburg, L., Evelo, C., Coort, S. L., Gaj, S., Keijer, J., Hesketh, J. & Brigelius, R., 2009, In : Molecular Nutrition & Food Research. 53, 12, p. 1561-1572

Research output: Contribution to journalArticleAcademicpeer-review

  • 85 Citations (Scopus)

    Cite this

    Kipp, A. (Creator), Banning, A. (Creator), Brigelius, R. (Creator), Keijer, J. (Creator), van Schothorst, E. M. (Creator) (13 Jul 2018). Four selenoproteins, protein biosynthesis, and Wnt signalling are particularly sensitive to limited selenium intake in mouse colon. Wageningen University.