Environmental and maternal factors shaping tonsillar microbiota development in piglets

Dataset

Description

Background The palatine tonsils are part of the mucosal immune system and stimulate immune responses through M cell uptake sampling of antigens and bacteria in the tonsillar crypts. Little is known about the development of the tonsillar microbiota and the factors determining the establishment and proliferation of disease-associated bacteria such as Streptococcus suis. In this study, we assessed tonsillar microbiota development in piglets during the first 5 weeks of life and identified the relative importance of maternal and environmental farm parameters influencing the tonsillar microbiota at different ages. Additionally, we studied the effect sow vaccination with a bacterin against S. suis on microbiota development and S. suis colonisation in their offspring. Results Amplicon sequencing of the 16S rRNA gene V3-V4 region revealed that a diverse tonsillar microbiota is established shortly after birth, which then gradually changes during the first 5 weeks of life without a large impact of weaning on composition or diversity. We found a strong litter effect, with siblings sharing a more similar microbiota compared to non-sibling piglets. Co-housing in rooms, within which litters were housed in separate pens, also had a large impact on microbiota composition. Sow parity and prepartum S. suis bacterin vaccination of sows had weaker but significant associations with microbiota composition, impacting on the abundance of Streptococcus species before and after weaning. Sex and birthweight had limited impact on the tonsillar microbiota, and none of the measured factors had consistent associations with microbiota diversity. Conclusions The piglet tonsillar microbiota is established shortly after birth. While microbiota development is associated with both environmental and maternal parameters, weaning has limited impact on microbiota composition. Intramuscular vaccination of sows pre-partum had a significant effect on the tonsillar microbiota composition of their piglets. These findings provide new insights into the mechanisms shaping the tonsillar microbiota.
Date made available27 Sept 2022
PublisherWageningen University & Research

Keywords

  • Microbiology
  • Biological sciences
  • Ecology
  • Genetics
  • Medicine
  • Infectious Diseases
  • Health sciences
  • piglet
  • microbiota
  • early life
  • longitudinal
  • sow

Cite this