Data from: Combinations of Spok genes create multiple meiotic drivers in Podospora

  • Aaron A. Vogan (Creator)
  • S. Lorena Ament-Velásquez (Creator)
  • Alexandra Granger-Farbos (Creator)
  • Jesper Svedberg (Creator)
  • Eric Bastiaans (Creator)
  • Fons Debets (Creator)
  • Virginie Coustou (Creator)
  • Hélène Yvanne (Creator)
  • Corinne Clavé (Creator)
  • Sven J. Saupe (Creator)
  • Hanna Johannesson (Creator)



Meiotic drive is the preferential transmission of a particular allele during sexual reproduction. The phenomenon is observed as spore killing in multiple fungi. In natural populations of Podospora anserina, seven spore killer types (Psks) have been identified through classical genetic analyses. Here we show that the Spok gene-family underlies the Psks. The combination of Spok genes at different chromosomal locations defines the spore killer types and creates a killing hierarchy within the same population. We identify two novel Spok homologs located within a large (74-167 kbp) region (the Spok block) that resides in different chromosomal locations in given strains. We confirm that the SPOK protein performs both killing and resistance functions and show that these activities are dependent on distinct domains, a predicted nuclease and kinase domain. Genomic and phylogenetic analyses across ascomycetes suggest that the Spok genes disperse via cross-species transfer, and evolve by duplication and diversification within lineages.
Date made available30 Jul 2019


  • podospora anserina
  • meiotic drive
  • genomics
  • gene drive
  • Podospora pauciseta
  • Spore-killing
  • Spok
  • genomic conflict

Cite this